Wisam Alnadem Mahmood, LaythKamil Almajmaie, A. Raheem, Saad Albawi
{"title":"基于协同过滤和关联规则挖掘的电影推荐系统的混合方法","authors":"Wisam Alnadem Mahmood, LaythKamil Almajmaie, A. Raheem, Saad Albawi","doi":"10.4025/actascitechnol.v44i1.58925","DOIUrl":null,"url":null,"abstract":"There is a huge information stockpile available on the internet. But the available information still throws a stiff challenge to users while selecting the needed information. Such an issue can be solved by applying information filtering for locating the required information through a Recommender System. While using a RS, the users find it easy to curate and collect relevant information out of massive databanks. Though various types of RS are currently available, yet the RS developed by Collaborative Filtering techniques has proven to be the most suitable for many problems. Among the various Recommended Systems available, movie recommendation system is the most widely used one. In this system, the recommendations will be made based on the similarities in the characteristics as exhibited by users / items. The movie recommendation system contains a huge list of user objects and item objects. This paper combines Collaborative Filtering Technique with association rules mining for better compatibility and assurance while delivering better recommendations. Hence, in the process, the produced recommendations can be considered as strong recommendations. The hybridization involving both collaborative filtering and association rules mining can provide strong, high-quality recommendations, even when enough data is unavailable. This article combines various recommendations for creating a movie recommendation system by using common filtering techniques and data mining techniques","PeriodicalId":7140,"journal":{"name":"Acta Scientiarum-technology","volume":"70 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2022-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A hybrid approach towards movie recommendation system with collaborative filtering and association rule mining\",\"authors\":\"Wisam Alnadem Mahmood, LaythKamil Almajmaie, A. Raheem, Saad Albawi\",\"doi\":\"10.4025/actascitechnol.v44i1.58925\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There is a huge information stockpile available on the internet. But the available information still throws a stiff challenge to users while selecting the needed information. Such an issue can be solved by applying information filtering for locating the required information through a Recommender System. While using a RS, the users find it easy to curate and collect relevant information out of massive databanks. Though various types of RS are currently available, yet the RS developed by Collaborative Filtering techniques has proven to be the most suitable for many problems. Among the various Recommended Systems available, movie recommendation system is the most widely used one. In this system, the recommendations will be made based on the similarities in the characteristics as exhibited by users / items. The movie recommendation system contains a huge list of user objects and item objects. This paper combines Collaborative Filtering Technique with association rules mining for better compatibility and assurance while delivering better recommendations. Hence, in the process, the produced recommendations can be considered as strong recommendations. The hybridization involving both collaborative filtering and association rules mining can provide strong, high-quality recommendations, even when enough data is unavailable. This article combines various recommendations for creating a movie recommendation system by using common filtering techniques and data mining techniques\",\"PeriodicalId\":7140,\"journal\":{\"name\":\"Acta Scientiarum-technology\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Scientiarum-technology\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.4025/actascitechnol.v44i1.58925\",\"RegionNum\":4,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Scientiarum-technology","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.4025/actascitechnol.v44i1.58925","RegionNum":4,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
A hybrid approach towards movie recommendation system with collaborative filtering and association rule mining
There is a huge information stockpile available on the internet. But the available information still throws a stiff challenge to users while selecting the needed information. Such an issue can be solved by applying information filtering for locating the required information through a Recommender System. While using a RS, the users find it easy to curate and collect relevant information out of massive databanks. Though various types of RS are currently available, yet the RS developed by Collaborative Filtering techniques has proven to be the most suitable for many problems. Among the various Recommended Systems available, movie recommendation system is the most widely used one. In this system, the recommendations will be made based on the similarities in the characteristics as exhibited by users / items. The movie recommendation system contains a huge list of user objects and item objects. This paper combines Collaborative Filtering Technique with association rules mining for better compatibility and assurance while delivering better recommendations. Hence, in the process, the produced recommendations can be considered as strong recommendations. The hybridization involving both collaborative filtering and association rules mining can provide strong, high-quality recommendations, even when enough data is unavailable. This article combines various recommendations for creating a movie recommendation system by using common filtering techniques and data mining techniques
期刊介绍:
The journal publishes original articles in all areas of Technology, including: Engineerings, Physics, Chemistry, Mathematics, Statistics, Geosciences and Computation Sciences.
To establish the public inscription of knowledge and its preservation; To publish results of research comprising ideas and new scientific suggestions; To publicize worldwide information and knowledge produced by the scientific community; To speech the process of scientific communication in Technology.