从单个图像的反射场景分离

Renjie Wan, Boxin Shi, Haoliang Li, Ling-yu Duan, A. Kot
{"title":"从单个图像的反射场景分离","authors":"Renjie Wan, Boxin Shi, Haoliang Li, Ling-yu Duan, A. Kot","doi":"10.1109/cvpr42600.2020.00247","DOIUrl":null,"url":null,"abstract":"For images taken through glass, existing methods focus on the restoration of the background scene by regarding the reflection components as noise. However, the scene reflected by glass surface also contains important information to be recovered, especially for the surveillance or criminal investigations. In this paper, instead of removing reflection components from the mixture image, we aim at recovering reflection scenes from the mixture image. We first propose a strategy to obtain such ground truth and its corresponding input images. Then, we propose a two-stage framework to obtain the visible reflection scene from the mixture image. Specifically, we train the network with a shift-invariant loss which is robust to misalignment between the input and output images. The experimental results show that our proposed method achieves promising results.","PeriodicalId":6715,"journal":{"name":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"30 1","pages":"2395-2403"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Reflection Scene Separation From a Single Image\",\"authors\":\"Renjie Wan, Boxin Shi, Haoliang Li, Ling-yu Duan, A. Kot\",\"doi\":\"10.1109/cvpr42600.2020.00247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For images taken through glass, existing methods focus on the restoration of the background scene by regarding the reflection components as noise. However, the scene reflected by glass surface also contains important information to be recovered, especially for the surveillance or criminal investigations. In this paper, instead of removing reflection components from the mixture image, we aim at recovering reflection scenes from the mixture image. We first propose a strategy to obtain such ground truth and its corresponding input images. Then, we propose a two-stage framework to obtain the visible reflection scene from the mixture image. Specifically, we train the network with a shift-invariant loss which is robust to misalignment between the input and output images. The experimental results show that our proposed method achieves promising results.\",\"PeriodicalId\":6715,\"journal\":{\"name\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"volume\":\"30 1\",\"pages\":\"2395-2403\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/cvpr42600.2020.00247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/cvpr42600.2020.00247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

对于透过玻璃拍摄的图像,现有的方法主要是将反射分量视为噪声来恢复背景场景。然而,玻璃表面反射出的场景也包含着重要的信息,特别是对于监视或刑事侦查来说。在本文中,我们的目标不是从混合图像中去除反射成分,而是从混合图像中恢复反射场景。我们首先提出了一种策略来获取这些基础真值及其相应的输入图像。然后,我们提出了一种两阶段框架,从混合图像中获得可见反射场景。具体来说,我们用移位不变损失训练网络,该损失对输入和输出图像之间的不对齐具有鲁棒性。实验结果表明,该方法取得了较好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reflection Scene Separation From a Single Image
For images taken through glass, existing methods focus on the restoration of the background scene by regarding the reflection components as noise. However, the scene reflected by glass surface also contains important information to be recovered, especially for the surveillance or criminal investigations. In this paper, instead of removing reflection components from the mixture image, we aim at recovering reflection scenes from the mixture image. We first propose a strategy to obtain such ground truth and its corresponding input images. Then, we propose a two-stage framework to obtain the visible reflection scene from the mixture image. Specifically, we train the network with a shift-invariant loss which is robust to misalignment between the input and output images. The experimental results show that our proposed method achieves promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信