M. Mardal, F. Aarestrup, B. Rasmussen, C. Mollerup, P. Dalsgaard, K. Linnet
{"title":"飞机废水分析图谱——一种绘制全球药物使用和滥用模式的新矩阵","authors":"M. Mardal, F. Aarestrup, B. Rasmussen, C. Mollerup, P. Dalsgaard, K. Linnet","doi":"10.1515/sjfs-2017-0003","DOIUrl":null,"url":null,"abstract":"Abstract There is limited knowledge on the global prescription and consumption patterns of therapeutic (TD) and illicit drugs (ID). Pooled urine analysis and wastewater-based epidemiology (WBE) has been used for local-based drug screening. It is, however, difficult to study the global epidemiology due to difficulties in obtaining samples. The aims of the study were to test the detectability of TD and ID in airplane wastewater samples categorized according to their geographical origin. Wastewater samples (n= 17) were collected from long-distance flights and prepared with enzymatic conjugate cleaving followed by either precipitation or solid phase extraction. Aliquots were analysed on various liquid chromatography – mass spectrometers. TDs were grouped according to their Anatomical Therapeutic Chemical (ATC) codes. Identification confidence was assigned to three levels based on variables including detection on multiple instruments and number of targets per compound. A total of 424 compounds were identified across all samples, distributed on 87 unique TD and 2 ID. Two principal components in a principal component analysis separated three clusters of wastewater samples corresponding to geographical origin of the airplanes with therapeutic subgroup ATC codes as variables. Airplane wastewater analysis is useful for identifying targets for WBE and toxicological analysis and explore drug use and abuse patterns.","PeriodicalId":41138,"journal":{"name":"Scandinavian Journal of Forensic Science","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analytical Profiling of Airplane Wastewater - a New Matrix for Mapping Worldwide Patterns of Drug Use and Abuse\",\"authors\":\"M. Mardal, F. Aarestrup, B. Rasmussen, C. Mollerup, P. Dalsgaard, K. Linnet\",\"doi\":\"10.1515/sjfs-2017-0003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract There is limited knowledge on the global prescription and consumption patterns of therapeutic (TD) and illicit drugs (ID). Pooled urine analysis and wastewater-based epidemiology (WBE) has been used for local-based drug screening. It is, however, difficult to study the global epidemiology due to difficulties in obtaining samples. The aims of the study were to test the detectability of TD and ID in airplane wastewater samples categorized according to their geographical origin. Wastewater samples (n= 17) were collected from long-distance flights and prepared with enzymatic conjugate cleaving followed by either precipitation or solid phase extraction. Aliquots were analysed on various liquid chromatography – mass spectrometers. TDs were grouped according to their Anatomical Therapeutic Chemical (ATC) codes. Identification confidence was assigned to three levels based on variables including detection on multiple instruments and number of targets per compound. A total of 424 compounds were identified across all samples, distributed on 87 unique TD and 2 ID. Two principal components in a principal component analysis separated three clusters of wastewater samples corresponding to geographical origin of the airplanes with therapeutic subgroup ATC codes as variables. Airplane wastewater analysis is useful for identifying targets for WBE and toxicological analysis and explore drug use and abuse patterns.\",\"PeriodicalId\":41138,\"journal\":{\"name\":\"Scandinavian Journal of Forensic Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scandinavian Journal of Forensic Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/sjfs-2017-0003\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MEDICINE, LEGAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scandinavian Journal of Forensic Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/sjfs-2017-0003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MEDICINE, LEGAL","Score":null,"Total":0}
Analytical Profiling of Airplane Wastewater - a New Matrix for Mapping Worldwide Patterns of Drug Use and Abuse
Abstract There is limited knowledge on the global prescription and consumption patterns of therapeutic (TD) and illicit drugs (ID). Pooled urine analysis and wastewater-based epidemiology (WBE) has been used for local-based drug screening. It is, however, difficult to study the global epidemiology due to difficulties in obtaining samples. The aims of the study were to test the detectability of TD and ID in airplane wastewater samples categorized according to their geographical origin. Wastewater samples (n= 17) were collected from long-distance flights and prepared with enzymatic conjugate cleaving followed by either precipitation or solid phase extraction. Aliquots were analysed on various liquid chromatography – mass spectrometers. TDs were grouped according to their Anatomical Therapeutic Chemical (ATC) codes. Identification confidence was assigned to three levels based on variables including detection on multiple instruments and number of targets per compound. A total of 424 compounds were identified across all samples, distributed on 87 unique TD and 2 ID. Two principal components in a principal component analysis separated three clusters of wastewater samples corresponding to geographical origin of the airplanes with therapeutic subgroup ATC codes as variables. Airplane wastewater analysis is useful for identifying targets for WBE and toxicological analysis and explore drug use and abuse patterns.