{"title":"会议论文:适应刚果民主共和国卢本巴希市及周边地区回收需求的绿色产业","authors":"T. M. Mwene-Mbeja","doi":"10.4236/GSC.2019.91002","DOIUrl":null,"url":null,"abstract":"The interest of this conference is agricultural, environmental, bioenergetics, and sanitary. In that context, domestic, agricultural and industrial environments produce organic waste, which needs to be collected, selected, stored and recycled properly in order to avoid environmental pollution and promote agriculture. The green Industry proposed involves the conversion of natural, non-toxic organic waste in order to efficiently produce organic fertilizers for agriculture. These types of fertilizers from biological origin are suitable because they are not toxic for human and the environment. Enzymatic reactions described in this presentation concern mainly the hydrolysis of proteins, sugars and lipids, the acidification of intermediate products from hydrolysis, the formation of acetate, and the production of methane. In other words, this review is timely as it discusses for the chemical behavior or the reactivity of different functional groups to better understand the enzymatic catalysis in the transformations of residual proteins, carbohydrates, and lipids to generate biomethane and fertilizers. In the same perspective, this review is to enrich the documentation related to organic reactions catalyzed by enzymes, which occur in the anaerobic degradation of residual organic substances, with emphasis on the structures of organic compounds and reaction mechanisms. This will allow understanding the displacement of the electrons of a reactive entity rich in electrons to another reactive entity that is poor in electrons to form new bonds in products.","PeriodicalId":12770,"journal":{"name":"Green and Sustainable Chemistry","volume":"439 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Conference Paper: Green Industry Adapted to Recycling Needs of Lubumbashi City and Surrounding Areas in Democratic Republic of the Congo\",\"authors\":\"T. M. Mwene-Mbeja\",\"doi\":\"10.4236/GSC.2019.91002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The interest of this conference is agricultural, environmental, bioenergetics, and sanitary. In that context, domestic, agricultural and industrial environments produce organic waste, which needs to be collected, selected, stored and recycled properly in order to avoid environmental pollution and promote agriculture. The green Industry proposed involves the conversion of natural, non-toxic organic waste in order to efficiently produce organic fertilizers for agriculture. These types of fertilizers from biological origin are suitable because they are not toxic for human and the environment. Enzymatic reactions described in this presentation concern mainly the hydrolysis of proteins, sugars and lipids, the acidification of intermediate products from hydrolysis, the formation of acetate, and the production of methane. In other words, this review is timely as it discusses for the chemical behavior or the reactivity of different functional groups to better understand the enzymatic catalysis in the transformations of residual proteins, carbohydrates, and lipids to generate biomethane and fertilizers. In the same perspective, this review is to enrich the documentation related to organic reactions catalyzed by enzymes, which occur in the anaerobic degradation of residual organic substances, with emphasis on the structures of organic compounds and reaction mechanisms. This will allow understanding the displacement of the electrons of a reactive entity rich in electrons to another reactive entity that is poor in electrons to form new bonds in products.\",\"PeriodicalId\":12770,\"journal\":{\"name\":\"Green and Sustainable Chemistry\",\"volume\":\"439 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Green and Sustainable Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/GSC.2019.91002\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Green and Sustainable Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/GSC.2019.91002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conference Paper: Green Industry Adapted to Recycling Needs of Lubumbashi City and Surrounding Areas in Democratic Republic of the Congo
The interest of this conference is agricultural, environmental, bioenergetics, and sanitary. In that context, domestic, agricultural and industrial environments produce organic waste, which needs to be collected, selected, stored and recycled properly in order to avoid environmental pollution and promote agriculture. The green Industry proposed involves the conversion of natural, non-toxic organic waste in order to efficiently produce organic fertilizers for agriculture. These types of fertilizers from biological origin are suitable because they are not toxic for human and the environment. Enzymatic reactions described in this presentation concern mainly the hydrolysis of proteins, sugars and lipids, the acidification of intermediate products from hydrolysis, the formation of acetate, and the production of methane. In other words, this review is timely as it discusses for the chemical behavior or the reactivity of different functional groups to better understand the enzymatic catalysis in the transformations of residual proteins, carbohydrates, and lipids to generate biomethane and fertilizers. In the same perspective, this review is to enrich the documentation related to organic reactions catalyzed by enzymes, which occur in the anaerobic degradation of residual organic substances, with emphasis on the structures of organic compounds and reaction mechanisms. This will allow understanding the displacement of the electrons of a reactive entity rich in electrons to another reactive entity that is poor in electrons to form new bonds in products.