具有非线性滑移边界条件的Navier-Stokes方程的子网格稳定方法

IF 1.6 3区 数学 Q1 MATHEMATICS
X. Dai, Chengwei Zhang
{"title":"具有非线性滑移边界条件的Navier-Stokes方程的子网格稳定方法","authors":"X. Dai, Chengwei Zhang","doi":"10.3846/mma.2021.12299","DOIUrl":null,"url":null,"abstract":"In this paper, we consider a subgrid stabilized Oseen iterative method for the Navier-Stokes equations with nonlinear slip boundary conditions and high Reynolds number. We provide one-level and two-level schemes based on this stability algorithm. The two-level schemes involve solving a subgrid stabilized nonlinear coarse mesh inequality system by applying m Oseen iterations, and a standard one-step Newton linearization problems without stabilization on the fine mesh. We analyze the stability of the proposed algorithm and provide error estimates and parameter scalings. Numerical examples are given to confirm our theoretical findings.","PeriodicalId":49861,"journal":{"name":"Mathematical Modelling and Analysis","volume":"36 1","pages":"528-547"},"PeriodicalIF":1.6000,"publicationDate":"2021-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions\",\"authors\":\"X. Dai, Chengwei Zhang\",\"doi\":\"10.3846/mma.2021.12299\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider a subgrid stabilized Oseen iterative method for the Navier-Stokes equations with nonlinear slip boundary conditions and high Reynolds number. We provide one-level and two-level schemes based on this stability algorithm. The two-level schemes involve solving a subgrid stabilized nonlinear coarse mesh inequality system by applying m Oseen iterations, and a standard one-step Newton linearization problems without stabilization on the fine mesh. We analyze the stability of the proposed algorithm and provide error estimates and parameter scalings. Numerical examples are given to confirm our theoretical findings.\",\"PeriodicalId\":49861,\"journal\":{\"name\":\"Mathematical Modelling and Analysis\",\"volume\":\"36 1\",\"pages\":\"528-547\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Modelling and Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3846/mma.2021.12299\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Modelling and Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3846/mma.2021.12299","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了具有非线性滑移边界条件和高雷诺数的Navier-Stokes方程的亚网格稳定Oseen迭代法。我们在此稳定性算法的基础上提供了一级和二级方案。两级方案包括通过m次osee迭代求解亚网格稳定的非线性粗网格不等式系统,以及在细网格上不稳定的标准一步牛顿线性化问题。我们分析了该算法的稳定性,并提供了误差估计和参数缩放。数值算例验证了理论结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A subgrid stabilized method for Navier-Stokes equations with nonlinear slip boundary conditions
In this paper, we consider a subgrid stabilized Oseen iterative method for the Navier-Stokes equations with nonlinear slip boundary conditions and high Reynolds number. We provide one-level and two-level schemes based on this stability algorithm. The two-level schemes involve solving a subgrid stabilized nonlinear coarse mesh inequality system by applying m Oseen iterations, and a standard one-step Newton linearization problems without stabilization on the fine mesh. We analyze the stability of the proposed algorithm and provide error estimates and parameter scalings. Numerical examples are given to confirm our theoretical findings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.80
自引率
5.60%
发文量
28
审稿时长
4.5 months
期刊介绍: Mathematical Modelling and Analysis publishes original research on all areas of mathematical modelling and analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信