膝关节旋转不稳定的acl缺陷膝:前外侧韧带和髂胫束的作用,由胫股腔室的平移和旋转定义

F. Noyes, Lauren E Huser, M. Levy
{"title":"膝关节旋转不稳定的acl缺陷膝:前外侧韧带和髂胫束的作用,由胫股腔室的平移和旋转定义","authors":"F. Noyes, Lauren E Huser, M. Levy","doi":"10.2106/JBJS.16.00199","DOIUrl":null,"url":null,"abstract":"Background: The anterolateral ligament (ALL) has been proposed as a primary restraint for knee rotational stability. However, the data remain inconclusive. The purpose of this study was to determine the effect of the ALL and the iliotibial band (ITB) on knee rotational stability. Methods: A 6-degrees-of-freedom robotic simulator was used to test 14 fresh-frozen cadaveric knee specimens. There were 4 testing conditions: intact, anterior cruciate ligament (ACL)-sectioned, ACL and ALL or ITB-sectioned (determined at random), and ACL and both ALL and ITB-sectioned. Lateral, central, and medial tibiofemoral compartment translations and internal tibial rotations were measured under 100-N anterior drawer (Lachman), 5-Nm internal rotation torque, and 2 pivot-shift simulations (Pivot Shift 1 was 5 Nm of internal rotation torque, and Pivot Shift 2 was 1 Nm of internal rotation torque). Statistical equivalence within 2 mm and 2° was defined as p < 0.05. Results: Sectioning the ACL alone produced increased pivot shift and Lachman compartment translations (p > 0.05). Further sectioning of either the ALL or the ITB separately produced minor added increases in pivot-shift compartment translations and tibial internal rotations (<2 mm or <3°) in the ACL-deficient knee. Sectioning both the ALL and ITB produced increases not equivalent to the ACL-deficient knee in pivot-shift lateral compartment translations (4.4 mm; 95% confidence interval [CI], 2.7 to 6.1 mm [p = 0.99] for Pivot Shift 1 and 4.3 mm; 95% CI, 2.6 to 6.0 mm [p = 0.99] for Pivot Shift 2), with 10 of 14 knees being converted to a corresponding Grade-3 pivot-shift (>20 mm of lateral translation). Increases in internal rotation after ALL and ITB sectioning occurred at 25°, 60°, and 90° (p = 0.99 for all) and ranged from 1° to 12°, with 21% of the knees having 8° to 12° increases. Conclusions: With ACL sectioning, a positive pivot-shift anterior subluxation occurred even with intact ALL and ITB structures, which indicates that the latter are not primary restraints but function together as anterolateral secondary restraints. With ACL deficiency, concurrent loss of the ALL and ITB resulted in conversion in a majority of knees (71%) to a Grade-3 pivot-shift subluxation, along with major increases of internal rotation in select knees. Clinical Relevance: With ACL rupture, major increases in rotational instability are not adequately resisted by native ALL or ITB structures. Therefore, anatomic ALL or ITB surgical reconstruction would not block a positive pivot shift. The potential protective effects of ACL graft-unloading from these structures require further study.","PeriodicalId":22579,"journal":{"name":"The Journal of Bone and Joint Surgery","volume":"2 1","pages":"305–314"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"79","resultStr":"{\"title\":\"Rotational Knee Instability in ACL-Deficient Knees: Role of the Anterolateral Ligament and Iliotibial Band as Defined by Tibiofemoral Compartment Translations and Rotations\",\"authors\":\"F. Noyes, Lauren E Huser, M. Levy\",\"doi\":\"10.2106/JBJS.16.00199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: The anterolateral ligament (ALL) has been proposed as a primary restraint for knee rotational stability. However, the data remain inconclusive. The purpose of this study was to determine the effect of the ALL and the iliotibial band (ITB) on knee rotational stability. Methods: A 6-degrees-of-freedom robotic simulator was used to test 14 fresh-frozen cadaveric knee specimens. There were 4 testing conditions: intact, anterior cruciate ligament (ACL)-sectioned, ACL and ALL or ITB-sectioned (determined at random), and ACL and both ALL and ITB-sectioned. Lateral, central, and medial tibiofemoral compartment translations and internal tibial rotations were measured under 100-N anterior drawer (Lachman), 5-Nm internal rotation torque, and 2 pivot-shift simulations (Pivot Shift 1 was 5 Nm of internal rotation torque, and Pivot Shift 2 was 1 Nm of internal rotation torque). Statistical equivalence within 2 mm and 2° was defined as p < 0.05. Results: Sectioning the ACL alone produced increased pivot shift and Lachman compartment translations (p > 0.05). Further sectioning of either the ALL or the ITB separately produced minor added increases in pivot-shift compartment translations and tibial internal rotations (<2 mm or <3°) in the ACL-deficient knee. Sectioning both the ALL and ITB produced increases not equivalent to the ACL-deficient knee in pivot-shift lateral compartment translations (4.4 mm; 95% confidence interval [CI], 2.7 to 6.1 mm [p = 0.99] for Pivot Shift 1 and 4.3 mm; 95% CI, 2.6 to 6.0 mm [p = 0.99] for Pivot Shift 2), with 10 of 14 knees being converted to a corresponding Grade-3 pivot-shift (>20 mm of lateral translation). Increases in internal rotation after ALL and ITB sectioning occurred at 25°, 60°, and 90° (p = 0.99 for all) and ranged from 1° to 12°, with 21% of the knees having 8° to 12° increases. Conclusions: With ACL sectioning, a positive pivot-shift anterior subluxation occurred even with intact ALL and ITB structures, which indicates that the latter are not primary restraints but function together as anterolateral secondary restraints. With ACL deficiency, concurrent loss of the ALL and ITB resulted in conversion in a majority of knees (71%) to a Grade-3 pivot-shift subluxation, along with major increases of internal rotation in select knees. Clinical Relevance: With ACL rupture, major increases in rotational instability are not adequately resisted by native ALL or ITB structures. Therefore, anatomic ALL or ITB surgical reconstruction would not block a positive pivot shift. The potential protective effects of ACL graft-unloading from these structures require further study.\",\"PeriodicalId\":22579,\"journal\":{\"name\":\"The Journal of Bone and Joint Surgery\",\"volume\":\"2 1\",\"pages\":\"305–314\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"79\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Bone and Joint Surgery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2106/JBJS.16.00199\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Bone and Joint Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2106/JBJS.16.00199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 79

摘要

背景:前外侧韧带(ALL)被认为是膝关节旋转稳定性的主要约束。然而,数据仍然没有定论。本研究的目的是确定ALL和髂胫束(ITB)对膝关节旋转稳定性的影响。方法:采用6自由度机器人模拟器对14例新鲜冷冻尸体膝关节标本进行检测。有4种检测条件:完整、前交叉韧带(ACL)切片、ACL和ALL或itb切片(随机确定)、ACL和ALL和itb切片。在100-N前drawer (Lachman), 5-Nm内旋转扭矩和2个Pivot - Shift模拟(Pivot - Shift 1为5 Nm内旋转扭矩,Pivot - Shift 2为1 Nm内旋转扭矩)下测量外侧、中央和内侧胫股间室平移和胫骨内旋转。2 mm和2°范围内的统计等效定义为p < 0.05。结果:单独切开前交叉韧带可增加支点移位和拉赫曼室平移(p > 0.05)。进一步分别对ALL或ITB进行切片,枢轴移位室平移和胫骨内旋(侧移20mm)的增加幅度较小。ALL和ITB切片后内旋增加发生在25°、60°和90°(p = 0.99),范围为1°至12°,21%的膝关节增加8°至12°。结论:在ACL切片中,即使是完整的ALL和ITB结构也会出现正枢轴移位前路半脱位,这表明后者不是主要约束,而是作为前外侧次要约束一起起作用。对于ACL缺陷,ALL和ITB的同时缺失导致大多数膝关节(71%)转变为3级枢轴移位半脱位,同时部分膝关节内旋增加。临床相关性:ACL破裂后,旋转不稳定性的主要增加不能被原生ALL或ITB结构充分抵抗。因此,解剖性ALL或ITB手术重建不会阻碍正向枢轴移位。从这些结构上卸下前交叉韧带移植物的潜在保护作用需要进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rotational Knee Instability in ACL-Deficient Knees: Role of the Anterolateral Ligament and Iliotibial Band as Defined by Tibiofemoral Compartment Translations and Rotations
Background: The anterolateral ligament (ALL) has been proposed as a primary restraint for knee rotational stability. However, the data remain inconclusive. The purpose of this study was to determine the effect of the ALL and the iliotibial band (ITB) on knee rotational stability. Methods: A 6-degrees-of-freedom robotic simulator was used to test 14 fresh-frozen cadaveric knee specimens. There were 4 testing conditions: intact, anterior cruciate ligament (ACL)-sectioned, ACL and ALL or ITB-sectioned (determined at random), and ACL and both ALL and ITB-sectioned. Lateral, central, and medial tibiofemoral compartment translations and internal tibial rotations were measured under 100-N anterior drawer (Lachman), 5-Nm internal rotation torque, and 2 pivot-shift simulations (Pivot Shift 1 was 5 Nm of internal rotation torque, and Pivot Shift 2 was 1 Nm of internal rotation torque). Statistical equivalence within 2 mm and 2° was defined as p < 0.05. Results: Sectioning the ACL alone produced increased pivot shift and Lachman compartment translations (p > 0.05). Further sectioning of either the ALL or the ITB separately produced minor added increases in pivot-shift compartment translations and tibial internal rotations (<2 mm or <3°) in the ACL-deficient knee. Sectioning both the ALL and ITB produced increases not equivalent to the ACL-deficient knee in pivot-shift lateral compartment translations (4.4 mm; 95% confidence interval [CI], 2.7 to 6.1 mm [p = 0.99] for Pivot Shift 1 and 4.3 mm; 95% CI, 2.6 to 6.0 mm [p = 0.99] for Pivot Shift 2), with 10 of 14 knees being converted to a corresponding Grade-3 pivot-shift (>20 mm of lateral translation). Increases in internal rotation after ALL and ITB sectioning occurred at 25°, 60°, and 90° (p = 0.99 for all) and ranged from 1° to 12°, with 21% of the knees having 8° to 12° increases. Conclusions: With ACL sectioning, a positive pivot-shift anterior subluxation occurred even with intact ALL and ITB structures, which indicates that the latter are not primary restraints but function together as anterolateral secondary restraints. With ACL deficiency, concurrent loss of the ALL and ITB resulted in conversion in a majority of knees (71%) to a Grade-3 pivot-shift subluxation, along with major increases of internal rotation in select knees. Clinical Relevance: With ACL rupture, major increases in rotational instability are not adequately resisted by native ALL or ITB structures. Therefore, anatomic ALL or ITB surgical reconstruction would not block a positive pivot shift. The potential protective effects of ACL graft-unloading from these structures require further study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信