一种用于空中认知周期演示的软件定义无线电测试平台

Jiapeng Wu, Panfei Du, Zihao Zhang, Qing Wang
{"title":"一种用于空中认知周期演示的软件定义无线电测试平台","authors":"Jiapeng Wu, Panfei Du, Zihao Zhang, Qing Wang","doi":"10.1109/SAM48682.2020.9104357","DOIUrl":null,"url":null,"abstract":"Deep learning (DL) have been widely applied in cognitive radio, including cognitive jamming, cognitive communication and cognitive radar. Many functional properties of DL are amenable to numerous electromagnetic waveform recognition tasks. In fact, there exists a gap between the DL network design and the real time application. This prompts us to adopt the software defined radio testbed to realize the online \"cognition-action\" demonstration. Via an innovative artificial intelligent (AI)-baseband co-design, the system can realize the modulation recognition and demodulation adaption, which is associating with a demonstration of \"cognition-action\" cycle. In addition, to realize the online recognition and adaption, we design the over-the-air demodulation reconstruction method. By our experimental results, we demonstrates that such cognitive cycle can bring about noticable improvement in cognitive applications.","PeriodicalId":6753,"journal":{"name":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","volume":"55 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Software Defined Radio Testbed for Over-the-air Cognitive Cycle Demonstration\",\"authors\":\"Jiapeng Wu, Panfei Du, Zihao Zhang, Qing Wang\",\"doi\":\"10.1109/SAM48682.2020.9104357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep learning (DL) have been widely applied in cognitive radio, including cognitive jamming, cognitive communication and cognitive radar. Many functional properties of DL are amenable to numerous electromagnetic waveform recognition tasks. In fact, there exists a gap between the DL network design and the real time application. This prompts us to adopt the software defined radio testbed to realize the online \\\"cognition-action\\\" demonstration. Via an innovative artificial intelligent (AI)-baseband co-design, the system can realize the modulation recognition and demodulation adaption, which is associating with a demonstration of \\\"cognition-action\\\" cycle. In addition, to realize the online recognition and adaption, we design the over-the-air demodulation reconstruction method. By our experimental results, we demonstrates that such cognitive cycle can bring about noticable improvement in cognitive applications.\",\"PeriodicalId\":6753,\"journal\":{\"name\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"volume\":\"55 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAM48682.2020.9104357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop (SAM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAM48682.2020.9104357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习已广泛应用于认知无线电领域,包括认知干扰、认知通信和认知雷达。深度学习的许多功能特性适用于许多电磁波形识别任务。实际上,深度学习网络的设计与实时应用之间存在着差距。这促使我们采用软件定义的无线电试验台来实现在线“认知-行动”演示。该系统通过创新的人工智能基带协同设计,实现了调制识别和解调自适应,实现了“认知-行动”循环。此外,为了实现在线识别和自适应,我们设计了无线解调重建方法。通过我们的实验结果,我们证明了这种认知循环可以显著改善认知应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Software Defined Radio Testbed for Over-the-air Cognitive Cycle Demonstration
Deep learning (DL) have been widely applied in cognitive radio, including cognitive jamming, cognitive communication and cognitive radar. Many functional properties of DL are amenable to numerous electromagnetic waveform recognition tasks. In fact, there exists a gap between the DL network design and the real time application. This prompts us to adopt the software defined radio testbed to realize the online "cognition-action" demonstration. Via an innovative artificial intelligent (AI)-baseband co-design, the system can realize the modulation recognition and demodulation adaption, which is associating with a demonstration of "cognition-action" cycle. In addition, to realize the online recognition and adaption, we design the over-the-air demodulation reconstruction method. By our experimental results, we demonstrates that such cognitive cycle can bring about noticable improvement in cognitive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信