具有Caputo导数的半线性时间分数系统的区域边界可观测性

IF 2.2 Q1 MATHEMATICS, APPLIED
Khalid Zguaid, F. E. El Alaoui
{"title":"具有Caputo导数的半线性时间分数系统的区域边界可观测性","authors":"Khalid Zguaid, F. E. El Alaoui","doi":"10.11121/ijocta.2023.1286","DOIUrl":null,"url":null,"abstract":"This paper considers the regional boundary observability problem for semilinear time-fractional systems. The main objective is to reconstruct the initial state on a subregion of the boundary of the evolution domain of the considered fractional system using the output equation. We proceed by providing a link between the regional boundary observability of the considered semilinear system on the desired boundary subregion, and the regional observability of its linear part, in a well chosen subregion of the evolution domain. By adding some assumptions on the nonlinear term appearing in the considered system, we give the main theorem that allows us to reconstruct the initial state in the well-chosen subregion using the Hilbert uniqueness method (HUM). From it, we recover the initial state on the boundary subregion. Finally, we provide a numerical example that backs up the theoretical results presented in this paper with a satisfying reconstruction error.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"43 1 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the regional boundary observability of semilinear time-fractional systems with Caputo derivative\",\"authors\":\"Khalid Zguaid, F. E. El Alaoui\",\"doi\":\"10.11121/ijocta.2023.1286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the regional boundary observability problem for semilinear time-fractional systems. The main objective is to reconstruct the initial state on a subregion of the boundary of the evolution domain of the considered fractional system using the output equation. We proceed by providing a link between the regional boundary observability of the considered semilinear system on the desired boundary subregion, and the regional observability of its linear part, in a well chosen subregion of the evolution domain. By adding some assumptions on the nonlinear term appearing in the considered system, we give the main theorem that allows us to reconstruct the initial state in the well-chosen subregion using the Hilbert uniqueness method (HUM). From it, we recover the initial state on the boundary subregion. Finally, we provide a numerical example that backs up the theoretical results presented in this paper with a satisfying reconstruction error.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"43 1 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2023.1286\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1286","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

研究半线性时间分数系统的区域边界可观测性问题。主要目的是利用输出方程重建所考虑的分数阶系统演化域边界的子区域上的初始状态。我们通过提供在期望的边界子区域上所考虑的半线性系统的区域边界可观测性和其线性部分的区域可观测性之间的联系,在进化域的一个精心选择的子区域。通过对所考虑的系统中出现的非线性项的一些假设,我们给出了允许我们使用希尔伯特唯一性方法(HUM)在选定的子区域重构初始状态的主要定理。由此,我们恢复了边界子区域上的初始状态。最后,我们给出了一个数值例子来支持本文的理论结果,并获得了令人满意的重构误差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the regional boundary observability of semilinear time-fractional systems with Caputo derivative
This paper considers the regional boundary observability problem for semilinear time-fractional systems. The main objective is to reconstruct the initial state on a subregion of the boundary of the evolution domain of the considered fractional system using the output equation. We proceed by providing a link between the regional boundary observability of the considered semilinear system on the desired boundary subregion, and the regional observability of its linear part, in a well chosen subregion of the evolution domain. By adding some assumptions on the nonlinear term appearing in the considered system, we give the main theorem that allows us to reconstruct the initial state in the well-chosen subregion using the Hilbert uniqueness method (HUM). From it, we recover the initial state on the boundary subregion. Finally, we provide a numerical example that backs up the theoretical results presented in this paper with a satisfying reconstruction error.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信