{"title":"基于时-空-时域变换的非线性分布参数系统建模方法","authors":"Xi Jin, Daibiao Wu, Haidong Yang, Chengjiu Zhu, Wenjing Shen, Kangkang Xu","doi":"10.1093/jcde/qwad052","DOIUrl":null,"url":null,"abstract":"\n Complex nonlinear distributed parameter systems (DPSs) exist widely in advanced industrial thermal processes. The modeling of such highly nonlinear systems is a challenge for traditional time/space-separation-based methods since they employ linear methods for the model reduction and spatiotemporal reconstruction, which may lead to an inefficient application of the nonlinear spatial structure features represented by the spatial basis functions. To overcome this problem, a novel spatiotemporal modeling framework composed of nonlinear temporal domain transformation and nonlinear spatiotemporal domain reconstruction is proposed in this paper. Firstly, local nonlinear dimension reduction based on the locally linear embedding technique is utilized to perform nonlinear temporal domain transformation of the spatiotemporal output of nonlinear DPSs. In this step, the original spatiotemporal data can be directly transformed into low-order time coefficients. Then, the extreme learning machine (ELM) method is utilized to establish a temporal model. Finally, through the spatiotemporal domain reconstruction based on the kernel-based ELM method, the prediction of the temporal dynamics obtained from the temporal model can be reconstructed back to the spatiotemporal output. The effectiveness and performance of the proposed method are demonstrated in experiments on the thermal processes of a snap curing oven and a lithium-ion battery.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":"31 1","pages":"1267-1279"},"PeriodicalIF":4.8000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A temporal-spatiotemporal domain transformation-based modeling method for nonlinear distributed parameter systems\",\"authors\":\"Xi Jin, Daibiao Wu, Haidong Yang, Chengjiu Zhu, Wenjing Shen, Kangkang Xu\",\"doi\":\"10.1093/jcde/qwad052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Complex nonlinear distributed parameter systems (DPSs) exist widely in advanced industrial thermal processes. The modeling of such highly nonlinear systems is a challenge for traditional time/space-separation-based methods since they employ linear methods for the model reduction and spatiotemporal reconstruction, which may lead to an inefficient application of the nonlinear spatial structure features represented by the spatial basis functions. To overcome this problem, a novel spatiotemporal modeling framework composed of nonlinear temporal domain transformation and nonlinear spatiotemporal domain reconstruction is proposed in this paper. Firstly, local nonlinear dimension reduction based on the locally linear embedding technique is utilized to perform nonlinear temporal domain transformation of the spatiotemporal output of nonlinear DPSs. In this step, the original spatiotemporal data can be directly transformed into low-order time coefficients. Then, the extreme learning machine (ELM) method is utilized to establish a temporal model. Finally, through the spatiotemporal domain reconstruction based on the kernel-based ELM method, the prediction of the temporal dynamics obtained from the temporal model can be reconstructed back to the spatiotemporal output. The effectiveness and performance of the proposed method are demonstrated in experiments on the thermal processes of a snap curing oven and a lithium-ion battery.\",\"PeriodicalId\":48611,\"journal\":{\"name\":\"Journal of Computational Design and Engineering\",\"volume\":\"31 1\",\"pages\":\"1267-1279\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2023-04-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational Design and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1093/jcde/qwad052\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jcde/qwad052","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
A temporal-spatiotemporal domain transformation-based modeling method for nonlinear distributed parameter systems
Complex nonlinear distributed parameter systems (DPSs) exist widely in advanced industrial thermal processes. The modeling of such highly nonlinear systems is a challenge for traditional time/space-separation-based methods since they employ linear methods for the model reduction and spatiotemporal reconstruction, which may lead to an inefficient application of the nonlinear spatial structure features represented by the spatial basis functions. To overcome this problem, a novel spatiotemporal modeling framework composed of nonlinear temporal domain transformation and nonlinear spatiotemporal domain reconstruction is proposed in this paper. Firstly, local nonlinear dimension reduction based on the locally linear embedding technique is utilized to perform nonlinear temporal domain transformation of the spatiotemporal output of nonlinear DPSs. In this step, the original spatiotemporal data can be directly transformed into low-order time coefficients. Then, the extreme learning machine (ELM) method is utilized to establish a temporal model. Finally, through the spatiotemporal domain reconstruction based on the kernel-based ELM method, the prediction of the temporal dynamics obtained from the temporal model can be reconstructed back to the spatiotemporal output. The effectiveness and performance of the proposed method are demonstrated in experiments on the thermal processes of a snap curing oven and a lithium-ion battery.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.