{"title":"重温吉尔伯特·斯特朗的“对我的混乱搜索”","authors":"Ao Li, Robert M Corless","doi":"10.1145/3363520.3363521","DOIUrl":null,"url":null,"abstract":"In the paper \"A Chaotic Search for <i>i</i>\" ([25]), Strang completely explained the behaviour of Newton's method when using real initial guesses on <i>f</i>(<i>x</i>) = <i>x</i><sup>2</sup> + 1, which has only the pair of complex roots ±<i>i</i>. He explored an exact symbolic formula for the iteration, namely <i>x<sub>n</sub></i> = cot (2<sup><i>n</i></sup><i>θ</i><sub>0</sub>), which is valid in exact arithmetic. In this paper, we extend this to to <i>k<sup>th</sup></i> order Householder methods, which include Halley's method, and to the secant method. Two formulae, <i>x<sub>n</sub></i> = cot (<i>θ</i><sub><i>n</i>-1</sub> + <i>θ</i><sub><i>n</i>-2</sub>) with <i>θ</i><sub><i>n</i>-1</sub> = arccot (<i>x</i><sub><i>n</i>-1</sub>) and <i>θ</i><sub><i>n</i>-2</sub> = arccot (<i>x</i><sub><i>n</i>-2</sub>), and <i>x<sub>n</sub></i> = cot ((<i>k</i> + 1)<sup><i>n</i></sup><i>θ</i><sub>0</sub>) with <i>θ</i><sub>0</sub> = arccot(<i>x</i><sub>0</sub>), are provided. The asymptotic behaviour and periodic character are illustrated by experimental computation. We show that other methods (Schröder iterations of the first kind) are generally not so simple. We also explain an old method that can be used to allow Maple's <i>Fractals[Newton]</i> package to visualize general one-step iterations by disguising them as Newton iterations.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Revisiting Gilbert Strang's \\\"a chaotic search for i\\\"\",\"authors\":\"Ao Li, Robert M Corless\",\"doi\":\"10.1145/3363520.3363521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper \\\"A Chaotic Search for <i>i</i>\\\" ([25]), Strang completely explained the behaviour of Newton's method when using real initial guesses on <i>f</i>(<i>x</i>) = <i>x</i><sup>2</sup> + 1, which has only the pair of complex roots ±<i>i</i>. He explored an exact symbolic formula for the iteration, namely <i>x<sub>n</sub></i> = cot (2<sup><i>n</i></sup><i>θ</i><sub>0</sub>), which is valid in exact arithmetic. In this paper, we extend this to to <i>k<sup>th</sup></i> order Householder methods, which include Halley's method, and to the secant method. Two formulae, <i>x<sub>n</sub></i> = cot (<i>θ</i><sub><i>n</i>-1</sub> + <i>θ</i><sub><i>n</i>-2</sub>) with <i>θ</i><sub><i>n</i>-1</sub> = arccot (<i>x</i><sub><i>n</i>-1</sub>) and <i>θ</i><sub><i>n</i>-2</sub> = arccot (<i>x</i><sub><i>n</i>-2</sub>), and <i>x<sub>n</sub></i> = cot ((<i>k</i> + 1)<sup><i>n</i></sup><i>θ</i><sub>0</sub>) with <i>θ</i><sub>0</sub> = arccot(<i>x</i><sub>0</sub>), are provided. The asymptotic behaviour and periodic character are illustrated by experimental computation. We show that other methods (Schröder iterations of the first kind) are generally not so simple. We also explain an old method that can be used to allow Maple's <i>Fractals[Newton]</i> package to visualize general one-step iterations by disguising them as Newton iterations.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"1 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3363520.3363521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3363520.3363521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Revisiting Gilbert Strang's "a chaotic search for i"
In the paper "A Chaotic Search for i" ([25]), Strang completely explained the behaviour of Newton's method when using real initial guesses on f(x) = x2 + 1, which has only the pair of complex roots ±i. He explored an exact symbolic formula for the iteration, namely xn = cot (2nθ0), which is valid in exact arithmetic. In this paper, we extend this to to kth order Householder methods, which include Halley's method, and to the secant method. Two formulae, xn = cot (θn-1 + θn-2) with θn-1 = arccot (xn-1) and θn-2 = arccot (xn-2), and xn = cot ((k + 1)nθ0) with θ0 = arccot(x0), are provided. The asymptotic behaviour and periodic character are illustrated by experimental computation. We show that other methods (Schröder iterations of the first kind) are generally not so simple. We also explain an old method that can be used to allow Maple's Fractals[Newton] package to visualize general one-step iterations by disguising them as Newton iterations.