重温吉尔伯特·斯特朗的“对我的混乱搜索”

Ao Li, Robert M Corless
{"title":"重温吉尔伯特·斯特朗的“对我的混乱搜索”","authors":"Ao Li, Robert M Corless","doi":"10.1145/3363520.3363521","DOIUrl":null,"url":null,"abstract":"In the paper \"A Chaotic Search for <i>i</i>\" ([25]), Strang completely explained the behaviour of Newton's method when using real initial guesses on <i>f</i>(<i>x</i>) = <i>x</i><sup>2</sup> + 1, which has only the pair of complex roots ±<i>i</i>. He explored an exact symbolic formula for the iteration, namely <i>x<sub>n</sub></i> = cot (2<sup><i>n</i></sup><i>θ</i><sub>0</sub>), which is valid in exact arithmetic. In this paper, we extend this to to <i>k<sup>th</sup></i> order Householder methods, which include Halley's method, and to the secant method. Two formulae, <i>x<sub>n</sub></i> = cot (<i>θ</i><sub><i>n</i>-1</sub> + <i>θ</i><sub><i>n</i>-2</sub>) with <i>θ</i><sub><i>n</i>-1</sub> = arccot (<i>x</i><sub><i>n</i>-1</sub>) and <i>θ</i><sub><i>n</i>-2</sub> = arccot (<i>x</i><sub><i>n</i>-2</sub>), and <i>x<sub>n</sub></i> = cot ((<i>k</i> + 1)<sup><i>n</i></sup><i>θ</i><sub>0</sub>) with <i>θ</i><sub>0</sub> = arccot(<i>x</i><sub>0</sub>), are provided. The asymptotic behaviour and periodic character are illustrated by experimental computation. We show that other methods (Schröder iterations of the first kind) are generally not so simple. We also explain an old method that can be used to allow Maple's <i>Fractals[Newton]</i> package to visualize general one-step iterations by disguising them as Newton iterations.","PeriodicalId":7093,"journal":{"name":"ACM Commun. Comput. Algebra","volume":"1 1","pages":"1-22"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Revisiting Gilbert Strang's \\\"a chaotic search for i\\\"\",\"authors\":\"Ao Li, Robert M Corless\",\"doi\":\"10.1145/3363520.3363521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the paper \\\"A Chaotic Search for <i>i</i>\\\" ([25]), Strang completely explained the behaviour of Newton's method when using real initial guesses on <i>f</i>(<i>x</i>) = <i>x</i><sup>2</sup> + 1, which has only the pair of complex roots ±<i>i</i>. He explored an exact symbolic formula for the iteration, namely <i>x<sub>n</sub></i> = cot (2<sup><i>n</i></sup><i>θ</i><sub>0</sub>), which is valid in exact arithmetic. In this paper, we extend this to to <i>k<sup>th</sup></i> order Householder methods, which include Halley's method, and to the secant method. Two formulae, <i>x<sub>n</sub></i> = cot (<i>θ</i><sub><i>n</i>-1</sub> + <i>θ</i><sub><i>n</i>-2</sub>) with <i>θ</i><sub><i>n</i>-1</sub> = arccot (<i>x</i><sub><i>n</i>-1</sub>) and <i>θ</i><sub><i>n</i>-2</sub> = arccot (<i>x</i><sub><i>n</i>-2</sub>), and <i>x<sub>n</sub></i> = cot ((<i>k</i> + 1)<sup><i>n</i></sup><i>θ</i><sub>0</sub>) with <i>θ</i><sub>0</sub> = arccot(<i>x</i><sub>0</sub>), are provided. The asymptotic behaviour and periodic character are illustrated by experimental computation. We show that other methods (Schröder iterations of the first kind) are generally not so simple. We also explain an old method that can be used to allow Maple's <i>Fractals[Newton]</i> package to visualize general one-step iterations by disguising them as Newton iterations.\",\"PeriodicalId\":7093,\"journal\":{\"name\":\"ACM Commun. Comput. Algebra\",\"volume\":\"1 1\",\"pages\":\"1-22\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Commun. Comput. Algebra\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3363520.3363521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Commun. Comput. Algebra","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3363520.3363521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在论文“A Chaotic Search for i”([25])中,Strang完整地解释了牛顿法在f(x) = x2 + 1上使用实初始猜测时的行为,其中f(x) = x2 + 1只有一对复根±i。他探索了一个精确的迭代符号公式,即xn = cot (2nθ0),这个公式在精确算术中是有效的。在本文中,我们将其推广到k阶Householder方法(其中包括Halley方法)和割线方法。给出了两个公式,xn = cot(θn-1 + θn-2)与θn-1 = arccot(xn-1)和θn-2 = arccot(xn-2),以及xn = cot((k + 1)nθ0)与θ0 = arccot(x0)。实验计算说明了该模型的渐近特性和周期特性。我们展示了其他方法(Schröder第一类迭代)通常没有那么简单。我们还解释了一种旧的方法,可以用来允许Maple的fractal [Newton]包通过将它们伪装成Newton迭代来可视化一般的一步迭代。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revisiting Gilbert Strang's "a chaotic search for i"
In the paper "A Chaotic Search for i" ([25]), Strang completely explained the behaviour of Newton's method when using real initial guesses on f(x) = x2 + 1, which has only the pair of complex roots ±i. He explored an exact symbolic formula for the iteration, namely xn = cot (2nθ0), which is valid in exact arithmetic. In this paper, we extend this to to kth order Householder methods, which include Halley's method, and to the secant method. Two formulae, xn = cot (θn-1 + θn-2) with θn-1 = arccot (xn-1) and θn-2 = arccot (xn-2), and xn = cot ((k + 1)nθ0) with θ0 = arccot(x0), are provided. The asymptotic behaviour and periodic character are illustrated by experimental computation. We show that other methods (Schröder iterations of the first kind) are generally not so simple. We also explain an old method that can be used to allow Maple's Fractals[Newton] package to visualize general one-step iterations by disguising them as Newton iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信