关于Kummer函数比值的界

Lukas Sablica, K. Hornik
{"title":"关于Kummer函数比值的界","authors":"Lukas Sablica, K. Hornik","doi":"10.1090/mcom/3690","DOIUrl":null,"url":null,"abstract":"Summary: In this paper we present lower and upper bounds for Kummer’s function ratios of the form M ( a,b,z ) ′ M ( a,b,z ) when 0 < a < b . The derived bounds are asymptotically precise, theoretically well-defined, numerically accurate, and easy to compute. Moreover, we show how the bounds can be used as starting values for monotonically convergent sequences to approximate the ratio with even higher precision while avoiding the anomalous convergence discussed by Gautschi [Math. Comp. 31 (1977), pp. 994-999]. This allows to apply the results in multiple areas, as for example the estimation of Watson distributions in statistical modelling. Furthermore, we extend the convergence results provided by Gautschi and the list of known bounds for the inverse of Kummer’s function ratio given by Sra and Karp [J. Multivariate Anal. 114 (2013), pp. 256-269]. In addition, the derived starting bounds are compared and connected to other results from the literature.","PeriodicalId":18301,"journal":{"name":"Math. Comput. Model.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On bounds for Kummer's function ratio\",\"authors\":\"Lukas Sablica, K. Hornik\",\"doi\":\"10.1090/mcom/3690\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary: In this paper we present lower and upper bounds for Kummer’s function ratios of the form M ( a,b,z ) ′ M ( a,b,z ) when 0 < a < b . The derived bounds are asymptotically precise, theoretically well-defined, numerically accurate, and easy to compute. Moreover, we show how the bounds can be used as starting values for monotonically convergent sequences to approximate the ratio with even higher precision while avoiding the anomalous convergence discussed by Gautschi [Math. Comp. 31 (1977), pp. 994-999]. This allows to apply the results in multiple areas, as for example the estimation of Watson distributions in statistical modelling. Furthermore, we extend the convergence results provided by Gautschi and the list of known bounds for the inverse of Kummer’s function ratio given by Sra and Karp [J. Multivariate Anal. 114 (2013), pp. 256-269]. In addition, the derived starting bounds are compared and connected to other results from the literature.\",\"PeriodicalId\":18301,\"journal\":{\"name\":\"Math. Comput. Model.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Math. Comput. Model.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1090/mcom/3690\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Math. Comput. Model.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:本文给出了当0 < a < b时,M (a,b,z) ' M (a,b,z)的Kummer函数比的下界和上界。所导出的界是渐近精确的,理论上定义良好的,数值精确的,并且易于计算。此外,我们展示了如何使用边界作为单调收敛序列的起始值,以更高的精度近似比率,同时避免了Gautschi [Math]讨论的异常收敛。汇编31(1977),第994-999页]。这允许将结果应用于多个领域,例如统计建模中沃森分布的估计。进一步推广了Gautschi给出的收敛性结果以及由Sra和Karp给出的Kummer函数比逆的已知界列表[J]。多元肛门。114 (2013),pp. 256-269]。此外,还将推导出的起始界与文献中的其他结果进行了比较和联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On bounds for Kummer's function ratio
Summary: In this paper we present lower and upper bounds for Kummer’s function ratios of the form M ( a,b,z ) ′ M ( a,b,z ) when 0 < a < b . The derived bounds are asymptotically precise, theoretically well-defined, numerically accurate, and easy to compute. Moreover, we show how the bounds can be used as starting values for monotonically convergent sequences to approximate the ratio with even higher precision while avoiding the anomalous convergence discussed by Gautschi [Math. Comp. 31 (1977), pp. 994-999]. This allows to apply the results in multiple areas, as for example the estimation of Watson distributions in statistical modelling. Furthermore, we extend the convergence results provided by Gautschi and the list of known bounds for the inverse of Kummer’s function ratio given by Sra and Karp [J. Multivariate Anal. 114 (2013), pp. 256-269]. In addition, the derived starting bounds are compared and connected to other results from the literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信