利用gpu将核子-核子势算子转换成SU(3)张量形式

T. Oberhuber, T. Dytrych, K. Launey, D. Langr, J. Draayer
{"title":"利用gpu将核子-核子势算子转换成SU(3)张量形式","authors":"T. Oberhuber, T. Dytrych, K. Launey, D. Langr, J. Draayer","doi":"10.3934/dcdss.2020383","DOIUrl":null,"url":null,"abstract":"Starting from the matrix elements of a nucleon-nucleon potential operator provided in a basis of spherical harmonic oscillator functions, we present an algorithm for expressing a given potential operator in terms of irreducible tensors of the SU(3) and SU(2) groups. Further, we introduce a GPU-based implementation of the latter and investigate its performance compared with a CPU-based version of the same. We find that the CUDA implementation delivers speedups of 2.27x – 5.93x.","PeriodicalId":11254,"journal":{"name":"Discrete & Continuous Dynamical Systems - S","volume":"134 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs\",\"authors\":\"T. Oberhuber, T. Dytrych, K. Launey, D. Langr, J. Draayer\",\"doi\":\"10.3934/dcdss.2020383\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Starting from the matrix elements of a nucleon-nucleon potential operator provided in a basis of spherical harmonic oscillator functions, we present an algorithm for expressing a given potential operator in terms of irreducible tensors of the SU(3) and SU(2) groups. Further, we introduce a GPU-based implementation of the latter and investigate its performance compared with a CPU-based version of the same. We find that the CUDA implementation delivers speedups of 2.27x – 5.93x.\",\"PeriodicalId\":11254,\"journal\":{\"name\":\"Discrete & Continuous Dynamical Systems - S\",\"volume\":\"134 6 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Continuous Dynamical Systems - S\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3934/dcdss.2020383\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Continuous Dynamical Systems - S","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/dcdss.2020383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

从球面谐振子函数中提供的核子-核子势算子的矩阵元素出发,给出了用SU(3)和SU(2)群的不可约张量表示给定势算子的算法。此外,我们介绍了后者的基于gpu的实现,并将其与基于cpu的版本进行了性能比较。我们发现CUDA实现提供了2.27 - 5.93倍的速度提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transformation of a Nucleon-Nucleon potential operator into its SU(3) tensor form using GPUs
Starting from the matrix elements of a nucleon-nucleon potential operator provided in a basis of spherical harmonic oscillator functions, we present an algorithm for expressing a given potential operator in terms of irreducible tensors of the SU(3) and SU(2) groups. Further, we introduce a GPU-based implementation of the latter and investigate its performance compared with a CPU-based version of the same. We find that the CUDA implementation delivers speedups of 2.27x – 5.93x.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信