用中心-半径阶关系估计一类广义调和凸映射的积分不等式

IF 0.7 Q2 MATHEMATICS
W. Afzal, K. Shabbir, M. Arshad, Joshua Kiddy K. Asamoah, A. Galal
{"title":"用中心-半径阶关系估计一类广义调和凸映射的积分不等式","authors":"W. Afzal, K. Shabbir, M. Arshad, Joshua Kiddy K. Asamoah, A. Galal","doi":"10.1155/2023/8865992","DOIUrl":null,"url":null,"abstract":"<jats:p>In interval analysis, integral inequalities are determined based on different types of order relations, including pseudo, fuzzy, inclusion, and various other partial order relations. By developing a link between center-radius (CR) order relations, it seeks to develop a theory of inequalities with novel estimates. A (CR)-order relation relationship differs from traditional interval-order relationships in that it is calculated as follows: <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <mi>q</mi>\n <mo>=</mo>\n <mfenced open=\"〈\" close=\"〉\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mi>c</mi>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>q</mi>\n </mrow>\n <mrow>\n <mi>r</mi>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n <mo>=</mo>\n <mfenced open=\"〈\" close=\"〉\" separators=\"|\">\n <mrow>\n <mrow>\n <mrow>\n <mover accent=\"true\">\n <mi>q</mi>\n <mo>¯</mo>\n </mover>\n <mo>+</mo>\n <munder accentunder=\"true\">\n <mi>q</mi>\n <mo>¯</mo>\n </munder>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mrow>\n <mover accent=\"true\">\n <mi>q</mi>\n <mo>¯</mo>\n </mover>\n <mo>−</mo>\n <munder accentunder=\"true\">\n <mi>q</mi>\n <mo>¯</mo>\n </munder>\n </mrow>\n <mo>/</mo>\n <mn>2</mn>\n </mrow>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>. There are several advantages to using this ordered relationship, including the fact that the inequality terms deduced from it yield much more precise results than any other partial-order relation defined in the literature. This study introduces the concept of harmonical <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msub>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n <mo>,</mo>\n <msub>\n <mrow>\n <mi>h</mi>\n </mrow>\n <mrow>\n <mn>2</mn>\n </mrow>\n </msub>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula>-convex functions associated with the center-radius order relations, which is very novel in literature. Applied to uncertainty, the center-radius order relation is an effective tool for studying inequalities. Our first step was to establish the Hermite−Hadamard <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <mi mathvariant=\"script\">H</mi>\n <mo>.</mo>\n <mi mathvariant=\"script\">H</mi>\n </mrow>\n </mfenced>\n </math>\n </jats:inline-formula> inequality and then to establish Jensen inequality using these notions. We discuss a few exceptional cases that could have practical applications. Moreover, examples are provided to verify the applicability of the theory developed in the present study.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Some Novel Estimates of Integral Inequalities for a Generalized Class of Harmonical Convex Mappings by Means of Center-Radius Order Relation\",\"authors\":\"W. Afzal, K. Shabbir, M. Arshad, Joshua Kiddy K. Asamoah, A. Galal\",\"doi\":\"10.1155/2023/8865992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<jats:p>In interval analysis, integral inequalities are determined based on different types of order relations, including pseudo, fuzzy, inclusion, and various other partial order relations. By developing a link between center-radius (CR) order relations, it seeks to develop a theory of inequalities with novel estimates. A (CR)-order relation relationship differs from traditional interval-order relationships in that it is calculated as follows: <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M1\\\">\\n <mi>q</mi>\\n <mo>=</mo>\\n <mfenced open=\\\"〈\\\" close=\\\"〉\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <mrow>\\n <mi>r</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n <mo>=</mo>\\n <mfenced open=\\\"〈\\\" close=\\\"〉\\\" separators=\\\"|\\\">\\n <mrow>\\n <mrow>\\n <mrow>\\n <mover accent=\\\"true\\\">\\n <mi>q</mi>\\n <mo>¯</mo>\\n </mover>\\n <mo>+</mo>\\n <munder accentunder=\\\"true\\\">\\n <mi>q</mi>\\n <mo>¯</mo>\\n </munder>\\n </mrow>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n <mo>,</mo>\\n <mrow>\\n <mrow>\\n <mover accent=\\\"true\\\">\\n <mi>q</mi>\\n <mo>¯</mo>\\n </mover>\\n <mo>−</mo>\\n <munder accentunder=\\\"true\\\">\\n <mi>q</mi>\\n <mo>¯</mo>\\n </munder>\\n </mrow>\\n <mo>/</mo>\\n <mn>2</mn>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>. There are several advantages to using this ordered relationship, including the fact that the inequality terms deduced from it yield much more precise results than any other partial-order relation defined in the literature. This study introduces the concept of harmonical <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M2\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <msub>\\n <mrow>\\n <mi>h</mi>\\n </mrow>\\n <mrow>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mrow>\\n <mi>h</mi>\\n </mrow>\\n <mrow>\\n <mn>2</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula>-convex functions associated with the center-radius order relations, which is very novel in literature. Applied to uncertainty, the center-radius order relation is an effective tool for studying inequalities. Our first step was to establish the Hermite−Hadamard <jats:inline-formula>\\n <math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\" id=\\\"M3\\\">\\n <mfenced open=\\\"(\\\" close=\\\")\\\" separators=\\\"|\\\">\\n <mrow>\\n <mi mathvariant=\\\"script\\\">H</mi>\\n <mo>.</mo>\\n <mi mathvariant=\\\"script\\\">H</mi>\\n </mrow>\\n </mfenced>\\n </math>\\n </jats:inline-formula> inequality and then to establish Jensen inequality using these notions. We discuss a few exceptional cases that could have practical applications. Moreover, examples are provided to verify the applicability of the theory developed in the present study.</jats:p>\",\"PeriodicalId\":43667,\"journal\":{\"name\":\"Muenster Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Muenster Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/8865992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8865992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

在区间分析中,积分不等式是根据不同类型的阶关系来确定的,包括伪、模糊、包含和其他各种偏序关系。通过发展中心-半径(CR)阶关系之间的联系,它寻求发展一种具有新估计的不等式理论。(CR)阶关系关系不同于传统的区间阶关系,其计算方法如下:Q = Q c,Q r =Q¯+ Q¯/ 2,Q¯−Q¯/2 .使用这种有序关系有几个优点,包括从它推导出的不等式项比文献中定义的任何其他偏序关系产生更精确的结果。本研究引入了谐波h 1的概念,h2 -凸函数与中心-半径阶关系相关联,这在文献中是非常新颖的。中心-半径阶关系是研究不确定性问题的有效工具。我们的第一步是建立Hermite - Hadamard H。H不等式,然后用这些概念建立Jensen不等式。我们将讨论一些可能具有实际应用的例外情况。并通过实例验证了本文所建立的理论的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Some Novel Estimates of Integral Inequalities for a Generalized Class of Harmonical Convex Mappings by Means of Center-Radius Order Relation
In interval analysis, integral inequalities are determined based on different types of order relations, including pseudo, fuzzy, inclusion, and various other partial order relations. By developing a link between center-radius (CR) order relations, it seeks to develop a theory of inequalities with novel estimates. A (CR)-order relation relationship differs from traditional interval-order relationships in that it is calculated as follows: q = q c , q r = q ¯ + q ¯ / 2 , q ¯ q ¯ / 2 . There are several advantages to using this ordered relationship, including the fact that the inequality terms deduced from it yield much more precise results than any other partial-order relation defined in the literature. This study introduces the concept of harmonical h 1 , h 2 -convex functions associated with the center-radius order relations, which is very novel in literature. Applied to uncertainty, the center-radius order relation is an effective tool for studying inequalities. Our first step was to establish the Hermite−Hadamard H . H inequality and then to establish Jensen inequality using these notions. We discuss a few exceptional cases that could have practical applications. Moreover, examples are provided to verify the applicability of the theory developed in the present study.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信