无件包装

IF 0.4 Q4 MATHEMATICS, APPLIED
R. Yuster
{"title":"无件包装","authors":"R. Yuster","doi":"10.4310/JOC.2019.v10.n1.a1","DOIUrl":null,"url":null,"abstract":"Erdős and Hanani proved that for every fixed integer $k \\ge 2$, the complete graph $K_n$ can be almost completely packed with copies of $K_k$; that is, $K_n$ contains pairwise edge-disjoint copies of $K_k$ that cover all but an $o_n(1)$ fraction of its edges. Equivalently, elements of the set $\\C(k)$ of all red-blue edge colorings of $K_k$ can be used to almost completely pack every red-blue edge coloring of $K_n$. \nThe following strengthening of the aforementioned Erdős-Hanani result is considered. Suppose $\\C' \\subset \\C(k)$. Is it true that we can use elements only from $\\C'$ and almost completely pack every red-blue edge coloring of $K_n$? An element $C \\in \\C(k)$ is {\\em avoidable} if $\\C'=\\C(k) \\setminus C$ has this property and a subset ${\\cal F} \\subset \\C(k)$ is avoidable if $\\C'=\\C(k) \\setminus {\\cal F}$ has this property. \nIt seems difficult to determine all avoidable graphs as well as all avoidable families. We prove some nontrivial sufficient conditions for avoidability. Our proofs imply, in particular, that (i) almost all elements of $\\C(k)$ are avoidable (ii) all Eulerian elements of $\\C(k)$ are avoidable and, in fact, the set of all Eulerian elements of $\\C(k)$ is avoidable.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"84 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Packing without some pieces\",\"authors\":\"R. Yuster\",\"doi\":\"10.4310/JOC.2019.v10.n1.a1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Erdős and Hanani proved that for every fixed integer $k \\\\ge 2$, the complete graph $K_n$ can be almost completely packed with copies of $K_k$; that is, $K_n$ contains pairwise edge-disjoint copies of $K_k$ that cover all but an $o_n(1)$ fraction of its edges. Equivalently, elements of the set $\\\\C(k)$ of all red-blue edge colorings of $K_k$ can be used to almost completely pack every red-blue edge coloring of $K_n$. \\nThe following strengthening of the aforementioned Erdős-Hanani result is considered. Suppose $\\\\C' \\\\subset \\\\C(k)$. Is it true that we can use elements only from $\\\\C'$ and almost completely pack every red-blue edge coloring of $K_n$? An element $C \\\\in \\\\C(k)$ is {\\\\em avoidable} if $\\\\C'=\\\\C(k) \\\\setminus C$ has this property and a subset ${\\\\cal F} \\\\subset \\\\C(k)$ is avoidable if $\\\\C'=\\\\C(k) \\\\setminus {\\\\cal F}$ has this property. \\nIt seems difficult to determine all avoidable graphs as well as all avoidable families. We prove some nontrivial sufficient conditions for avoidability. Our proofs imply, in particular, that (i) almost all elements of $\\\\C(k)$ are avoidable (ii) all Eulerian elements of $\\\\C(k)$ are avoidable and, in fact, the set of all Eulerian elements of $\\\\C(k)$ is avoidable.\",\"PeriodicalId\":44683,\"journal\":{\"name\":\"Journal of Combinatorics\",\"volume\":\"84 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2019-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4310/JOC.2019.v10.n1.a1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/JOC.2019.v10.n1.a1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

Erdős和Hanani证明了对于每一个固定整数$k \ge 2$,完全图$K_n$几乎可以被$K_k$的副本完全填充;也就是说,$K_n$包含$K_k$的成对边不相交的副本,这些副本覆盖了除$o_n(1)$以外的所有边。同样地,所有K_k$的红蓝边着色的集合$\C(k)$中的元素可以用来几乎完全填充所有K_n$的红蓝边着色。考虑以下加强上述Erdős-Hanani结果。假设$\C' \子集\C(k)$。我们是否可以只使用$\C'$中的元素,并且几乎完全打包$K_n$的所有红蓝边着色?如果$\C'=\C(k) \setminus C$具有此属性,则\C(k)$中的元素$C \是{\em可避免}的,如果$\C'=\C(k) \setminus {\cal F}$具有此属性,则子集${\cal F} \子集\C(k)$是可避免的。似乎很难确定所有可避免的图表以及所有可避免的家庭。证明了可避免性的一些重要充分条件。我们的证明特别地暗示(i)几乎所有$\C(k)$的元素都是可避免的(ii) $\C(k)$的所有欧拉元素都是可避免的,事实上,$\C(k)$的所有欧拉元素的集合都是可避免的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Packing without some pieces
Erdős and Hanani proved that for every fixed integer $k \ge 2$, the complete graph $K_n$ can be almost completely packed with copies of $K_k$; that is, $K_n$ contains pairwise edge-disjoint copies of $K_k$ that cover all but an $o_n(1)$ fraction of its edges. Equivalently, elements of the set $\C(k)$ of all red-blue edge colorings of $K_k$ can be used to almost completely pack every red-blue edge coloring of $K_n$. The following strengthening of the aforementioned Erdős-Hanani result is considered. Suppose $\C' \subset \C(k)$. Is it true that we can use elements only from $\C'$ and almost completely pack every red-blue edge coloring of $K_n$? An element $C \in \C(k)$ is {\em avoidable} if $\C'=\C(k) \setminus C$ has this property and a subset ${\cal F} \subset \C(k)$ is avoidable if $\C'=\C(k) \setminus {\cal F}$ has this property. It seems difficult to determine all avoidable graphs as well as all avoidable families. We prove some nontrivial sufficient conditions for avoidability. Our proofs imply, in particular, that (i) almost all elements of $\C(k)$ are avoidable (ii) all Eulerian elements of $\C(k)$ are avoidable and, in fact, the set of all Eulerian elements of $\C(k)$ is avoidable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信