四阶微分算子的共振

Asymptot. Anal. Pub Date : 2017-03-06 DOI:10.3233/ASY-181489
A. Badanin, E. Korotyaev
{"title":"四阶微分算子的共振","authors":"A. Badanin, E. Korotyaev","doi":"10.3233/ASY-181489","DOIUrl":null,"url":null,"abstract":"We consider fourth order ordinary differential operator with compactly supported coefficients on the line. We define resonances as zeros of the Fredholm determinant which is analytic on a four sheeted Riemann surface. We determine asymptotics of the number of resonances in complex discs at large radius. We consider resonances of an Euler-Bernoulli operator on the real line with the positive coefficients which are constants outside some finite interval. We show that the Euler-Bernoulli operator has no eigenvalues and resonances iff the positive coefficients are constants on the whole axis.","PeriodicalId":8603,"journal":{"name":"Asymptot. Anal.","volume":"26 1","pages":"137-177"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Resonances of 4th order differential operators\",\"authors\":\"A. Badanin, E. Korotyaev\",\"doi\":\"10.3233/ASY-181489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider fourth order ordinary differential operator with compactly supported coefficients on the line. We define resonances as zeros of the Fredholm determinant which is analytic on a four sheeted Riemann surface. We determine asymptotics of the number of resonances in complex discs at large radius. We consider resonances of an Euler-Bernoulli operator on the real line with the positive coefficients which are constants outside some finite interval. We show that the Euler-Bernoulli operator has no eigenvalues and resonances iff the positive coefficients are constants on the whole axis.\",\"PeriodicalId\":8603,\"journal\":{\"name\":\"Asymptot. Anal.\",\"volume\":\"26 1\",\"pages\":\"137-177\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asymptot. Anal.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/ASY-181489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asymptot. Anal.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ASY-181489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

考虑线性上系数紧支承的四阶常微分算子。我们将共振定义为弗雷德霍姆行列式的零,这是在四层黎曼曲面上解析的。我们确定了大半径复杂圆盘共振数的渐近性。我们考虑了在有限区间外为常数的正系数实线上的欧拉-伯努利算子的共振。我们证明了欧拉-伯努利算子没有特征值和共振,如果正系数是整个轴上的常数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Resonances of 4th order differential operators
We consider fourth order ordinary differential operator with compactly supported coefficients on the line. We define resonances as zeros of the Fredholm determinant which is analytic on a four sheeted Riemann surface. We determine asymptotics of the number of resonances in complex discs at large radius. We consider resonances of an Euler-Bernoulli operator on the real line with the positive coefficients which are constants outside some finite interval. We show that the Euler-Bernoulli operator has no eigenvalues and resonances iff the positive coefficients are constants on the whole axis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信