气候变化与美国农业:生产函数的多维坡度异质性

M. Keane, Timothy Neal
{"title":"气候变化与美国农业:生产函数的多维坡度异质性","authors":"M. Keane, Timothy Neal","doi":"10.2139/ssrn.3180480","DOIUrl":null,"url":null,"abstract":"We study potential impacts of future climate change on U.S. agricultural productivity using county-level yield and weather data from 1950 to 2015. To account for adaptation of production to different weather conditions, it is crucial to allow for both spacial and temporal variation in the production process mapping weather to crop yields. We present a new panel data estimation technique, called mean observation OLS (MO-OLS) that allows for spatial and temporal heterogeneity in all regression parameters (intercepts and slopes). Both forms of heterogeneity are important: We find strong evidence that production function parameters adapt to local climate, and also that sensitivity of yield to high temperature declined from 1950-89. We use our estimates to project corn yields to 2100 using 19 climate models and three greenhouse gas emission scenarios. We predict unmitigated climate change will greatly reduce yield. Our mean prediction (over climate models) is that adaptation alone can mitigate 36% of the damage, while emissions reductions consistent with the Paris targets would mitigate 76%.","PeriodicalId":23435,"journal":{"name":"UNSW Business School Research Paper Series","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions\",\"authors\":\"M. Keane, Timothy Neal\",\"doi\":\"10.2139/ssrn.3180480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study potential impacts of future climate change on U.S. agricultural productivity using county-level yield and weather data from 1950 to 2015. To account for adaptation of production to different weather conditions, it is crucial to allow for both spacial and temporal variation in the production process mapping weather to crop yields. We present a new panel data estimation technique, called mean observation OLS (MO-OLS) that allows for spatial and temporal heterogeneity in all regression parameters (intercepts and slopes). Both forms of heterogeneity are important: We find strong evidence that production function parameters adapt to local climate, and also that sensitivity of yield to high temperature declined from 1950-89. We use our estimates to project corn yields to 2100 using 19 climate models and three greenhouse gas emission scenarios. We predict unmitigated climate change will greatly reduce yield. Our mean prediction (over climate models) is that adaptation alone can mitigate 36% of the damage, while emissions reductions consistent with the Paris targets would mitigate 76%.\",\"PeriodicalId\":23435,\"journal\":{\"name\":\"UNSW Business School Research Paper Series\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UNSW Business School Research Paper Series\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3180480\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UNSW Business School Research Paper Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3180480","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

我们利用1950 - 2015年的县级产量和天气数据研究了未来气候变化对美国农业生产力的潜在影响。考虑到生产对不同天气条件的适应,至关重要的是要考虑到生产过程中的空间和时间变化,将天气映射到作物产量。我们提出了一种新的面板数据估计技术,称为平均观测OLS (MO-OLS),它允许所有回归参数(截距和斜率)的空间和时间异质性。这两种形式的异质性都很重要:我们发现强有力的证据表明,生产函数参数适应当地气候,而且产量对高温的敏感性在1950- 1989年间有所下降。我们利用19种气候模型和3种温室气体排放情景,预测了到2100年的玉米产量。我们预测,如果气候变化得不到缓解,将大大减少产量。我们(对气候模型)的平均预测是,仅适应就能减轻36%的损害,而与《巴黎协定》目标一致的减排将减轻76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Climate Change and U.S. Agriculture: Accounting for Multi-dimensional Slope Heterogeneity in Production Functions
We study potential impacts of future climate change on U.S. agricultural productivity using county-level yield and weather data from 1950 to 2015. To account for adaptation of production to different weather conditions, it is crucial to allow for both spacial and temporal variation in the production process mapping weather to crop yields. We present a new panel data estimation technique, called mean observation OLS (MO-OLS) that allows for spatial and temporal heterogeneity in all regression parameters (intercepts and slopes). Both forms of heterogeneity are important: We find strong evidence that production function parameters adapt to local climate, and also that sensitivity of yield to high temperature declined from 1950-89. We use our estimates to project corn yields to 2100 using 19 climate models and three greenhouse gas emission scenarios. We predict unmitigated climate change will greatly reduce yield. Our mean prediction (over climate models) is that adaptation alone can mitigate 36% of the damage, while emissions reductions consistent with the Paris targets would mitigate 76%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信