{"title":"热机械加工丝肽和纳米粘土填充壳聚糖的结构与性能","authors":"Pei Chen, Fengwei Xie, F. Tang, T. McNally","doi":"10.1080/20550324.2020.1820796","DOIUrl":null,"url":null,"abstract":"Abstract While chitosan has great potential for biomedical and wider application due to its appealing characteristics such as biocompatibility and inherent antimicrobial activity, its properties usually need to be further tailored for specific uses. In this study, the effect of inclusion of silk peptide (SP) and nanoclays (montmorillonite, MMT and sepiolite, SPT) on the properties of thermomechanically processed chitosan were examined. Blending SP with chitosan led to a material with greater elasticity and surface wettability. For the chitosan matrix, addition of either MMT or SPT resulted in increased mechanical properties with MMT being more effective, likely due to its 2D layered structure. For the chitosan/SP matrix, while inclusion of MMT caused increased mechanical properties and thermal stability, SPT was more effective than MMT at reducing surface hydrophilicity and SPT fully counteracted the increased surface hydrophilicity caused by SP. Thus, this work shows the different effects of MMT and SPT on chitosan-based materials and provides insights into achieving balanced properties. Graphical Abstract","PeriodicalId":18872,"journal":{"name":"Nanocomposites","volume":"24 1","pages":"125 - 136"},"PeriodicalIF":4.2000,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan\",\"authors\":\"Pei Chen, Fengwei Xie, F. Tang, T. McNally\",\"doi\":\"10.1080/20550324.2020.1820796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract While chitosan has great potential for biomedical and wider application due to its appealing characteristics such as biocompatibility and inherent antimicrobial activity, its properties usually need to be further tailored for specific uses. In this study, the effect of inclusion of silk peptide (SP) and nanoclays (montmorillonite, MMT and sepiolite, SPT) on the properties of thermomechanically processed chitosan were examined. Blending SP with chitosan led to a material with greater elasticity and surface wettability. For the chitosan matrix, addition of either MMT or SPT resulted in increased mechanical properties with MMT being more effective, likely due to its 2D layered structure. For the chitosan/SP matrix, while inclusion of MMT caused increased mechanical properties and thermal stability, SPT was more effective than MMT at reducing surface hydrophilicity and SPT fully counteracted the increased surface hydrophilicity caused by SP. Thus, this work shows the different effects of MMT and SPT on chitosan-based materials and provides insights into achieving balanced properties. Graphical Abstract\",\"PeriodicalId\":18872,\"journal\":{\"name\":\"Nanocomposites\",\"volume\":\"24 1\",\"pages\":\"125 - 136\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2020-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanocomposites\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1080/20550324.2020.1820796\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanocomposites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/20550324.2020.1820796","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Structure and properties of thermomechanically processed silk peptide and nanoclay filled chitosan
Abstract While chitosan has great potential for biomedical and wider application due to its appealing characteristics such as biocompatibility and inherent antimicrobial activity, its properties usually need to be further tailored for specific uses. In this study, the effect of inclusion of silk peptide (SP) and nanoclays (montmorillonite, MMT and sepiolite, SPT) on the properties of thermomechanically processed chitosan were examined. Blending SP with chitosan led to a material with greater elasticity and surface wettability. For the chitosan matrix, addition of either MMT or SPT resulted in increased mechanical properties with MMT being more effective, likely due to its 2D layered structure. For the chitosan/SP matrix, while inclusion of MMT caused increased mechanical properties and thermal stability, SPT was more effective than MMT at reducing surface hydrophilicity and SPT fully counteracted the increased surface hydrophilicity caused by SP. Thus, this work shows the different effects of MMT and SPT on chitosan-based materials and provides insights into achieving balanced properties. Graphical Abstract