{"title":"破纪录的太阳光子探测","authors":"R. Wilkinson","doi":"10.1103/physics.16.s107","DOIUrl":null,"url":null,"abstract":"O bservations over the past decade or so have shown that the Sun emits manymore gamma rays at GeV energies than is expected frommodeling. Now a collaboration operating the High-Altitude Water Cherenkov (HAWC) Observatory in Mexico show that this gamma-ray excess extends up to TeV energies [1]. This finding has implications for our understanding of both stellar atmospheres and astroparticle physics.","PeriodicalId":783,"journal":{"name":"Technical Physics","volume":"68 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Record-Breaking Detection of Solar Photons\",\"authors\":\"R. Wilkinson\",\"doi\":\"10.1103/physics.16.s107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"O bservations over the past decade or so have shown that the Sun emits manymore gamma rays at GeV energies than is expected frommodeling. Now a collaboration operating the High-Altitude Water Cherenkov (HAWC) Observatory in Mexico show that this gamma-ray excess extends up to TeV energies [1]. This finding has implications for our understanding of both stellar atmospheres and astroparticle physics.\",\"PeriodicalId\":783,\"journal\":{\"name\":\"Technical Physics\",\"volume\":\"68 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-08-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Technical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physics.16.s107\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Technical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physics.16.s107","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
O bservations over the past decade or so have shown that the Sun emits manymore gamma rays at GeV energies than is expected frommodeling. Now a collaboration operating the High-Altitude Water Cherenkov (HAWC) Observatory in Mexico show that this gamma-ray excess extends up to TeV energies [1]. This finding has implications for our understanding of both stellar atmospheres and astroparticle physics.
期刊介绍:
Technical Physics is a journal that contains practical information on all aspects of applied physics, especially instrumentation and measurement techniques. Particular emphasis is put on plasma physics and related fields such as studies of charged particles in electromagnetic fields, synchrotron radiation, electron and ion beams, gas lasers and discharges. Other journal topics are the properties of condensed matter, including semiconductors, superconductors, gases, liquids, and different materials.