k阶的卷积分数泊松过程

IF 1.4 2区 经济学 Q3 BUSINESS, FINANCE
A. Sengar, N. S. Upadhye
{"title":"k阶的卷积分数泊松过程","authors":"A. Sengar, N. S. Upadhye","doi":"10.1080/17442508.2023.2165399","DOIUrl":null,"url":null,"abstract":"In this article, we define a convoluted fractional Poisson process of order k (CFPPoK), which is governed by the discrete convolution operator in the system of fractional differential equations. Next, we obtain its one-dimensional distribution by using the Laplace transform of its state probabilities. Various distributional properties, such as probability generating function, moment generating function and moments, are derived. A special case of CFPPoK, (say) convoluted Poisson process of order k (CPPoK) is studied and also established Martingale characterization for CPPoK. We further derive the covariance structure of CFPPoK and investigate the long-range dependence property.","PeriodicalId":50447,"journal":{"name":"Finance and Stochastics","volume":"57 1","pages":"1170 - 1191"},"PeriodicalIF":1.4000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Convoluted fractional Poisson process of order k\",\"authors\":\"A. Sengar, N. S. Upadhye\",\"doi\":\"10.1080/17442508.2023.2165399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we define a convoluted fractional Poisson process of order k (CFPPoK), which is governed by the discrete convolution operator in the system of fractional differential equations. Next, we obtain its one-dimensional distribution by using the Laplace transform of its state probabilities. Various distributional properties, such as probability generating function, moment generating function and moments, are derived. A special case of CFPPoK, (say) convoluted Poisson process of order k (CPPoK) is studied and also established Martingale characterization for CPPoK. We further derive the covariance structure of CFPPoK and investigate the long-range dependence property.\",\"PeriodicalId\":50447,\"journal\":{\"name\":\"Finance and Stochastics\",\"volume\":\"57 1\",\"pages\":\"1170 - 1191\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Finance and Stochastics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1080/17442508.2023.2165399\",\"RegionNum\":2,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Finance and Stochastics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1080/17442508.2023.2165399","RegionNum":2,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们定义了一个k阶的卷积分数泊松过程(CFPPoK),它由分数阶微分方程系统中的离散卷积算子控制。接下来,我们利用其状态概率的拉普拉斯变换得到它的一维分布。推导了各种分布性质,如概率生成函数、矩生成函数和矩。研究了CFPPoK的一种特殊情况,即k阶卷积泊松过程(CPPoK),并建立了CPPoK的鞅刻画。进一步推导了CFPPoK的协方差结构,并研究了其长期相关性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Convoluted fractional Poisson process of order k
In this article, we define a convoluted fractional Poisson process of order k (CFPPoK), which is governed by the discrete convolution operator in the system of fractional differential equations. Next, we obtain its one-dimensional distribution by using the Laplace transform of its state probabilities. Various distributional properties, such as probability generating function, moment generating function and moments, are derived. A special case of CFPPoK, (say) convoluted Poisson process of order k (CPPoK) is studied and also established Martingale characterization for CPPoK. We further derive the covariance structure of CFPPoK and investigate the long-range dependence property.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Finance and Stochastics
Finance and Stochastics 管理科学-数学跨学科应用
CiteScore
2.90
自引率
5.90%
发文量
20
审稿时长
>12 weeks
期刊介绍: The purpose of Finance and Stochastics is to provide a high standard publication forum for research - in all areas of finance based on stochastic methods - on specific topics in mathematics (in particular probability theory, statistics and stochastic analysis) motivated by the analysis of problems in finance. Finance and Stochastics encompasses - but is not limited to - the following fields: - theory and analysis of financial markets - continuous time finance - derivatives research - insurance in relation to finance - portfolio selection - credit and market risks - term structure models - statistical and empirical financial studies based on advanced stochastic methods - numerical and stochastic solution techniques for problems in finance - intertemporal economics, uncertainty and information in relation to finance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信