大词汇噪声鲁棒语音识别的归一化调幅特征

V. Mitra, H. Franco, M. Graciarena, Arindam Mandal
{"title":"大词汇噪声鲁棒语音识别的归一化调幅特征","authors":"V. Mitra, H. Franco, M. Graciarena, Arindam Mandal","doi":"10.1109/ICASSP.2012.6288824","DOIUrl":null,"url":null,"abstract":"Background noise and channel degradations seriously constrain the performance of state-of-the-art speech recognition systems. Studies comparing human speech recognition performance with automatic speech recognition systems indicate that the human auditory system is highly robust against background noise and channel variabilities compared to automated systems. A traditional way to add robustness to a speech recognition system is to construct a robust feature set for the speech recognition model. In this work, we present an amplitude modulation feature derived from Teager's nonlinear energy operator that is power normalized and cosine transformed to produce normalized modulation cepstral coefficient (NMCC) features. The proposed NMCC features are compared with respect to state-of-the-art noise-robust features in Aurora-2 and a renoised Wall Street Journal (WSJ) corpus. The WSJ word-recognition experiments were performed on both a clean and artificially renoised WSJ corpus using SRI's DECIPHER large vocabulary speech recognition system. The experiments were performed under three train-test conditions: (a) matched, (b) mismatched, and (c) multi-conditioned. The Aurora-2 digit recognition task was performed using the standard HTK recognizer distributed with Aurora-2. Our results indicate that the proposed NMCC features demonstrated noise robustness in almost all the training-test conditions of renoised WSJ data and also improved digit recognition accuracies for Aurora-2 compared to the MFCCs and state-of-the-art noise-robust features.","PeriodicalId":6443,"journal":{"name":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"104","resultStr":"{\"title\":\"Normalized amplitude modulation features for large vocabulary noise-robust speech recognition\",\"authors\":\"V. Mitra, H. Franco, M. Graciarena, Arindam Mandal\",\"doi\":\"10.1109/ICASSP.2012.6288824\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background noise and channel degradations seriously constrain the performance of state-of-the-art speech recognition systems. Studies comparing human speech recognition performance with automatic speech recognition systems indicate that the human auditory system is highly robust against background noise and channel variabilities compared to automated systems. A traditional way to add robustness to a speech recognition system is to construct a robust feature set for the speech recognition model. In this work, we present an amplitude modulation feature derived from Teager's nonlinear energy operator that is power normalized and cosine transformed to produce normalized modulation cepstral coefficient (NMCC) features. The proposed NMCC features are compared with respect to state-of-the-art noise-robust features in Aurora-2 and a renoised Wall Street Journal (WSJ) corpus. The WSJ word-recognition experiments were performed on both a clean and artificially renoised WSJ corpus using SRI's DECIPHER large vocabulary speech recognition system. The experiments were performed under three train-test conditions: (a) matched, (b) mismatched, and (c) multi-conditioned. The Aurora-2 digit recognition task was performed using the standard HTK recognizer distributed with Aurora-2. Our results indicate that the proposed NMCC features demonstrated noise robustness in almost all the training-test conditions of renoised WSJ data and also improved digit recognition accuracies for Aurora-2 compared to the MFCCs and state-of-the-art noise-robust features.\",\"PeriodicalId\":6443,\"journal\":{\"name\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"104\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2012.6288824\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2012.6288824","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 104

摘要

背景噪声和信道退化严重制约了当前语音识别系统的性能。人类语音识别性能与自动语音识别系统的比较研究表明,与自动系统相比,人类听觉系统对背景噪声和信道变异性具有很强的鲁棒性。传统的增强语音识别系统鲁棒性的方法是为语音识别模型构建鲁棒特征集。在这项工作中,我们提出了一个从Teager的非线性能量算子衍生出来的调幅特征,该特征是功率归一化和余弦变换,以产生归一化调制倒谱系数(NMCC)特征。将提议的NMCC特征与Aurora-2中最先进的噪声鲁棒特征和修正的华尔街日报(WSJ)语料库进行比较。使用SRI的破译大词汇量语音识别系统,在清洁和人工修正的WSJ语料库上进行了WSJ单词识别实验。实验在三种训练测试条件下进行:(a)匹配,(b)不匹配和(c)多条件。使用与Aurora-2一起分发的标准HTK识别器执行Aurora-2数字识别任务。我们的研究结果表明,与mfccc和最先进的噪声鲁棒性特征相比,所提出的NMCC特征在几乎所有修正WSJ数据的训练测试条件下都表现出了噪声鲁棒性,并且提高了Aurora-2的数字识别精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Normalized amplitude modulation features for large vocabulary noise-robust speech recognition
Background noise and channel degradations seriously constrain the performance of state-of-the-art speech recognition systems. Studies comparing human speech recognition performance with automatic speech recognition systems indicate that the human auditory system is highly robust against background noise and channel variabilities compared to automated systems. A traditional way to add robustness to a speech recognition system is to construct a robust feature set for the speech recognition model. In this work, we present an amplitude modulation feature derived from Teager's nonlinear energy operator that is power normalized and cosine transformed to produce normalized modulation cepstral coefficient (NMCC) features. The proposed NMCC features are compared with respect to state-of-the-art noise-robust features in Aurora-2 and a renoised Wall Street Journal (WSJ) corpus. The WSJ word-recognition experiments were performed on both a clean and artificially renoised WSJ corpus using SRI's DECIPHER large vocabulary speech recognition system. The experiments were performed under three train-test conditions: (a) matched, (b) mismatched, and (c) multi-conditioned. The Aurora-2 digit recognition task was performed using the standard HTK recognizer distributed with Aurora-2. Our results indicate that the proposed NMCC features demonstrated noise robustness in almost all the training-test conditions of renoised WSJ data and also improved digit recognition accuracies for Aurora-2 compared to the MFCCs and state-of-the-art noise-robust features.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信