具有强时间奇点的分数阶bvp及其解的极限性质

S. Stanek
{"title":"具有强时间奇点的分数阶bvp及其解的极限性质","authors":"S. Stanek","doi":"10.2478/s11533-014-0435-9","DOIUrl":null,"url":null,"abstract":"AbstractIn the first part, we investigate the singular BVP $$\\tfrac{d}\n{{dt}}^c D^\\alpha u + (a/t)^c D^\\alpha u = \\mathcal{H}u$$, u(0) = A, u(1) = B, cDαu(t)|t=0 = 0, where $$\\mathcal{H}$$ is a continuous operator, α ∈ (0, 1) and a < 0. Here, cD denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems $$\\tfrac{d}\n{{dt}}^c D^{\\alpha _n } u + (a/t)^c D^{\\alpha _n } u = f(t,u,^c D^{\\beta _n } u)$$, u(0) = A, u(1) = B, $$\\left. {^c D^{\\alpha _n } u(t)} \\right|_{t = 0} = 0$$ where a < 0, 0 < βn ≤ αn < 1, limn→∞βn = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"11 1","pages":"1638-1655"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fractional BVPs with strong time singularities and the limit properties of their solutions\",\"authors\":\"S. Stanek\",\"doi\":\"10.2478/s11533-014-0435-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractIn the first part, we investigate the singular BVP $$\\\\tfrac{d}\\n{{dt}}^c D^\\\\alpha u + (a/t)^c D^\\\\alpha u = \\\\mathcal{H}u$$, u(0) = A, u(1) = B, cDαu(t)|t=0 = 0, where $$\\\\mathcal{H}$$ is a continuous operator, α ∈ (0, 1) and a < 0. Here, cD denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems $$\\\\tfrac{d}\\n{{dt}}^c D^{\\\\alpha _n } u + (a/t)^c D^{\\\\alpha _n } u = f(t,u,^c D^{\\\\beta _n } u)$$, u(0) = A, u(1) = B, $$\\\\left. {^c D^{\\\\alpha _n } u(t)} \\\\right|_{t = 0} = 0$$ where a < 0, 0 < βn ≤ αn < 1, limn→∞βn = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.\",\"PeriodicalId\":50988,\"journal\":{\"name\":\"Central European Journal of Mathematics\",\"volume\":\"11 1\",\"pages\":\"1638-1655\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Central European Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/s11533-014-0435-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-014-0435-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在第一部分中,我们研究了奇异BVP $$\tfrac{d}{{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u$$, u(0) = A, u(1) = B, cDαu(t)|t=0 =0,其中$$\mathcal{H}$$是一个连续算子,α∈(0,1)且A < 0。这里,cD表示卡普托分数阶导数。用Leray-Schauder非线性替代证明了存在性结果。第二部分建立了问题序列$$\tfrac{d}{{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)$$, u(0) = A, u(1) = B, $$\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0$$其中A < 0, 0 < βn≤αn < 1, limn→∞βn = 1的解与满足边界条件u(0) = A, u(1) = B, u '(0) = 0的u″+(A /t)u ' = f(t, u, u ')的解之间的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fractional BVPs with strong time singularities and the limit properties of their solutions
AbstractIn the first part, we investigate the singular BVP $$\tfrac{d} {{dt}}^c D^\alpha u + (a/t)^c D^\alpha u = \mathcal{H}u$$, u(0) = A, u(1) = B, cDαu(t)|t=0 = 0, where $$\mathcal{H}$$ is a continuous operator, α ∈ (0, 1) and a < 0. Here, cD denotes the Caputo fractional derivative. The existence result is proved by the Leray-Schauder nonlinear alternative. The second part establishes the relations between solutions of the sequence of problems $$\tfrac{d} {{dt}}^c D^{\alpha _n } u + (a/t)^c D^{\alpha _n } u = f(t,u,^c D^{\beta _n } u)$$, u(0) = A, u(1) = B, $$\left. {^c D^{\alpha _n } u(t)} \right|_{t = 0} = 0$$ where a < 0, 0 < βn ≤ αn < 1, limn→∞βn = 1, and solutions of u″+(a/t)u′ = f(t, u, u′) satisfying the boundary conditions u(0) = A, u(1) = B, u′(0) = 0.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信