\(l_p\) -空间的三种数值指标

Pub Date : 2022-06-28 DOI:10.3336/gm.57.1.04
Sung Guen Kim
{"title":"\\(l_p\\) -空间的三种数值指标","authors":"Sung Guen Kim","doi":"10.3336/gm.57.1.04","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the polynomial numerical index \\(n^{(k)}(l_p),\\) the symmetric multilinear numerical index\n\\(n_s^{(k)}(l_p),\\) and the multilinear numerical index \\(n_m^{(k)}(l_p)\\) of \\(l_p\\) spaces, for \\(1\\leq p\\leq \\infty.\\) First we prove that \\(n_{s}^{(k)}(l_1)=n_{m}^{(k)}(l_1)=1,\\) for every \\(k\\geq 2.\\)\nWe show that for \\(1 \\lt p \\lt \\infty,\\) \\(n_I^{(k)}(l_p^{j+1})\\leq n_I^{(k)}(l_p^j),\\) for every \\(j\\in \\mathbb{N}\\) and \\(n_I^{(k)}(l_p)=\\lim_{j\\to \\infty}n_I^{(k)}(l_p^j),\\) for every \\(I=s, m,\\) where \\(l_p^j=(\\mathbb{C}^j, \\|\\cdot\\|_p)\\) or \\((\\mathbb{R}^j, \\|\\cdot\\|_p).\\)\nWe also show the following inequality between \\( n_s^{(k)}(l_p^j)\\) and \\(n^{(k)}(l_p^j)\\): let \\(1 \\lt p \\lt \\infty\\) and \\(k\\in \\mathbb{N}\\) be\nfixed. Then\n\\[\n\n\n\nc(k: l_p^j)^{-1}~n^{(k)}(l_p^j)\\leq n_s^{(k)}(l_p^j)\\leq n^{(k)}(l_p^j),\n\n\n\\]\nfor every \\(j\\in \\mathbb{N}\\cup\\{\\infty\\},\\) where\n\\(l_p^{\\infty}:=l_p,\\)\n\\[\n\n\n\nc(k: l_p)=\\inf\\Big\\{M>0: \\|\\check{Q}\\|\\leq M\\|Q\\|,\\mbox{ for every}~Q\\in {\\mathcal P}(^k l_p)\\Big\\}\n\n\n\\]\nand \\(\\check{Q}\\) denotes the symmetric \\(k\\)-linear form associated with \\(Q.\\) From this inequality, we deduce that if \\(l_{p}\\) is a complex space, then \\(\\lim_{j\\to \\infty} n_s^{(j)}(l_p)=\\lim_{j\\to \\infty} n_m^{(j)}(l_p)=0,\\) for every \\(1\\lt p \\lt \\infty.\\)","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Three kinds of numerical indices of \\\\(l_p\\\\)-spaces\",\"authors\":\"Sung Guen Kim\",\"doi\":\"10.3336/gm.57.1.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we investigate the polynomial numerical index \\\\(n^{(k)}(l_p),\\\\) the symmetric multilinear numerical index\\n\\\\(n_s^{(k)}(l_p),\\\\) and the multilinear numerical index \\\\(n_m^{(k)}(l_p)\\\\) of \\\\(l_p\\\\) spaces, for \\\\(1\\\\leq p\\\\leq \\\\infty.\\\\) First we prove that \\\\(n_{s}^{(k)}(l_1)=n_{m}^{(k)}(l_1)=1,\\\\) for every \\\\(k\\\\geq 2.\\\\)\\nWe show that for \\\\(1 \\\\lt p \\\\lt \\\\infty,\\\\) \\\\(n_I^{(k)}(l_p^{j+1})\\\\leq n_I^{(k)}(l_p^j),\\\\) for every \\\\(j\\\\in \\\\mathbb{N}\\\\) and \\\\(n_I^{(k)}(l_p)=\\\\lim_{j\\\\to \\\\infty}n_I^{(k)}(l_p^j),\\\\) for every \\\\(I=s, m,\\\\) where \\\\(l_p^j=(\\\\mathbb{C}^j, \\\\|\\\\cdot\\\\|_p)\\\\) or \\\\((\\\\mathbb{R}^j, \\\\|\\\\cdot\\\\|_p).\\\\)\\nWe also show the following inequality between \\\\( n_s^{(k)}(l_p^j)\\\\) and \\\\(n^{(k)}(l_p^j)\\\\): let \\\\(1 \\\\lt p \\\\lt \\\\infty\\\\) and \\\\(k\\\\in \\\\mathbb{N}\\\\) be\\nfixed. Then\\n\\\\[\\n\\n\\n\\nc(k: l_p^j)^{-1}~n^{(k)}(l_p^j)\\\\leq n_s^{(k)}(l_p^j)\\\\leq n^{(k)}(l_p^j),\\n\\n\\n\\\\]\\nfor every \\\\(j\\\\in \\\\mathbb{N}\\\\cup\\\\{\\\\infty\\\\},\\\\) where\\n\\\\(l_p^{\\\\infty}:=l_p,\\\\)\\n\\\\[\\n\\n\\n\\nc(k: l_p)=\\\\inf\\\\Big\\\\{M>0: \\\\|\\\\check{Q}\\\\|\\\\leq M\\\\|Q\\\\|,\\\\mbox{ for every}~Q\\\\in {\\\\mathcal P}(^k l_p)\\\\Big\\\\}\\n\\n\\n\\\\]\\nand \\\\(\\\\check{Q}\\\\) denotes the symmetric \\\\(k\\\\)-linear form associated with \\\\(Q.\\\\) From this inequality, we deduce that if \\\\(l_{p}\\\\) is a complex space, then \\\\(\\\\lim_{j\\\\to \\\\infty} n_s^{(j)}(l_p)=\\\\lim_{j\\\\to \\\\infty} n_m^{(j)}(l_p)=0,\\\\) for every \\\\(1\\\\lt p \\\\lt \\\\infty.\\\\)\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-06-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.3336/gm.57.1.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3336/gm.57.1.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了多项式数值指标 \(n^{(k)}(l_p),\) 对称多线性数值指标\(n_s^{(k)}(l_p),\) 以及多线性数值指标 \(n_m^{(k)}(l_p)\) 的 \(l_p\) 空间,用于 \(1\leq p\leq \infty.\) 首先我们证明 \(n_{s}^{(k)}(l_1)=n_{m}^{(k)}(l_1)=1,\) 对于每一个 \(k\geq 2.\)我们为 \(1 \lt p \lt \infty,\) \(n_I^{(k)}(l_p^{j+1})\leq n_I^{(k)}(l_p^j),\) 对于每一个 \(j\in \mathbb{N}\) 和 \(n_I^{(k)}(l_p)=\lim_{j\to \infty}n_I^{(k)}(l_p^j),\) 对于每一个 \(I=s, m,\) 在哪里 \(l_p^j=(\mathbb{C}^j, \|\cdot\|_p)\) 或 \((\mathbb{R}^j, \|\cdot\|_p).\)我们还展示了下面的不等式 \( n_s^{(k)}(l_p^j)\) 和 \(n^{(k)}(l_p^j)\):让 \(1 \lt p \lt \infty\) 和 \(k\in \mathbb{N}\) 固定。然后\[c(k: l_p^j)^{-1}~n^{(k)}(l_p^j)\leq n_s^{(k)}(l_p^j)\leq n^{(k)}(l_p^j),\]对于每一个 \(j\in \mathbb{N}\cup\{\infty\},\) 在哪里\(l_p^{\infty}:=l_p,\)\[c(k: l_p)=\inf\Big\{M>0: \|\check{Q}\|\leq M\|Q\|,\mbox{ for every}~Q\in {\mathcal P}(^k l_p)\Big\}\]和 \(\check{Q}\) 表示对称 \(k\)与…相关的线性形式 \(Q.\) 由这个不等式,我们推断出如果 \(l_{p}\) 那么是复空间吗 \(\lim_{j\to \infty} n_s^{(j)}(l_p)=\lim_{j\to \infty} n_m^{(j)}(l_p)=0,\) 对于每一个 \(1\lt p \lt \infty.\)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Three kinds of numerical indices of \(l_p\)-spaces
In this paper, we investigate the polynomial numerical index \(n^{(k)}(l_p),\) the symmetric multilinear numerical index \(n_s^{(k)}(l_p),\) and the multilinear numerical index \(n_m^{(k)}(l_p)\) of \(l_p\) spaces, for \(1\leq p\leq \infty.\) First we prove that \(n_{s}^{(k)}(l_1)=n_{m}^{(k)}(l_1)=1,\) for every \(k\geq 2.\) We show that for \(1 \lt p \lt \infty,\) \(n_I^{(k)}(l_p^{j+1})\leq n_I^{(k)}(l_p^j),\) for every \(j\in \mathbb{N}\) and \(n_I^{(k)}(l_p)=\lim_{j\to \infty}n_I^{(k)}(l_p^j),\) for every \(I=s, m,\) where \(l_p^j=(\mathbb{C}^j, \|\cdot\|_p)\) or \((\mathbb{R}^j, \|\cdot\|_p).\) We also show the following inequality between \( n_s^{(k)}(l_p^j)\) and \(n^{(k)}(l_p^j)\): let \(1 \lt p \lt \infty\) and \(k\in \mathbb{N}\) be fixed. Then \[ c(k: l_p^j)^{-1}~n^{(k)}(l_p^j)\leq n_s^{(k)}(l_p^j)\leq n^{(k)}(l_p^j), \] for every \(j\in \mathbb{N}\cup\{\infty\},\) where \(l_p^{\infty}:=l_p,\) \[ c(k: l_p)=\inf\Big\{M>0: \|\check{Q}\|\leq M\|Q\|,\mbox{ for every}~Q\in {\mathcal P}(^k l_p)\Big\} \] and \(\check{Q}\) denotes the symmetric \(k\)-linear form associated with \(Q.\) From this inequality, we deduce that if \(l_{p}\) is a complex space, then \(\lim_{j\to \infty} n_s^{(j)}(l_p)=\lim_{j\to \infty} n_m^{(j)}(l_p)=0,\) for every \(1\lt p \lt \infty.\)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信