基于动态数据系统(DDS)的机床结构动态分析数字滤波

J.X. Yuan, X.J. Tang , S.M. Wu
{"title":"基于动态数据系统(DDS)的机床结构动态分析数字滤波","authors":"J.X. Yuan,&nbsp;X.J. Tang ,&nbsp;S.M. Wu","doi":"10.1016/0020-7357(86)90005-3","DOIUrl":null,"url":null,"abstract":"<div><p>The Dynamic Data System (DDS) methodology has been successfully used for machine tool structural analysis. In this paper, the digital filtering technique is proposed to reduce the adequate order of the Autoregressive Moving Average Vector (ARMAV) moel to overcome the difficulty in higher order modeling.</p><p>Problems in digital filtering for the ARMAV model are analyzed, including: (1) the selection of an appropriate filter, (2) the elimination of phase distortion, (3) the methods of transformation from an analog filter to discrete filter, and (4) the choice of sampling interval. Two examples are illustrated using the digital filtering technique for identifying the modal and structural parameters of the system.</p></div>","PeriodicalId":100704,"journal":{"name":"International Journal of Machine Tool Design and Research","volume":"26 3","pages":"Pages 267-281"},"PeriodicalIF":0.0000,"publicationDate":"1986-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/0020-7357(86)90005-3","citationCount":"0","resultStr":"{\"title\":\"Digital filtering for machine tool structural dynamic analysis by the dynamic data system (DDS)\",\"authors\":\"J.X. Yuan,&nbsp;X.J. Tang ,&nbsp;S.M. Wu\",\"doi\":\"10.1016/0020-7357(86)90005-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Dynamic Data System (DDS) methodology has been successfully used for machine tool structural analysis. In this paper, the digital filtering technique is proposed to reduce the adequate order of the Autoregressive Moving Average Vector (ARMAV) moel to overcome the difficulty in higher order modeling.</p><p>Problems in digital filtering for the ARMAV model are analyzed, including: (1) the selection of an appropriate filter, (2) the elimination of phase distortion, (3) the methods of transformation from an analog filter to discrete filter, and (4) the choice of sampling interval. Two examples are illustrated using the digital filtering technique for identifying the modal and structural parameters of the system.</p></div>\",\"PeriodicalId\":100704,\"journal\":{\"name\":\"International Journal of Machine Tool Design and Research\",\"volume\":\"26 3\",\"pages\":\"Pages 267-281\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1986-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/0020-7357(86)90005-3\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Machine Tool Design and Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/0020735786900053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Machine Tool Design and Research","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/0020735786900053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

动态数据系统(DDS)方法已成功地应用于机床结构分析。本文提出采用数字滤波技术降低自回归移动平均向量(ARMAV)模型的适当阶数,以克服高阶建模的困难。分析了ARMAV模型的数字滤波问题,包括:(1)合适滤波器的选择;(2)相位失真的消除;(3)模拟滤波器到离散滤波器的转换方法;(4)采样间隔的选择。用数字滤波技术识别系统的模态参数和结构参数,给出了两个实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Digital filtering for machine tool structural dynamic analysis by the dynamic data system (DDS)

The Dynamic Data System (DDS) methodology has been successfully used for machine tool structural analysis. In this paper, the digital filtering technique is proposed to reduce the adequate order of the Autoregressive Moving Average Vector (ARMAV) moel to overcome the difficulty in higher order modeling.

Problems in digital filtering for the ARMAV model are analyzed, including: (1) the selection of an appropriate filter, (2) the elimination of phase distortion, (3) the methods of transformation from an analog filter to discrete filter, and (4) the choice of sampling interval. Two examples are illustrated using the digital filtering technique for identifying the modal and structural parameters of the system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信