算术曲线没有带实系数的韦尔上同调理论

C. Deninger
{"title":"算术曲线没有带实系数的韦尔上同调理论","authors":"C. Deninger","doi":"10.2422/2036-2145.202204_005","DOIUrl":null,"url":null,"abstract":"A well known argument by Serre shows that there is no Weil cohomology theory with real coefficients for smooth projective varieties over $\\bar{\\mathbb{F}}_p$. In this note we explain why no\"Weil-\"cohomology theory with real coefficients can exist for arithmetic schemes over spec $\\mathbb{Z}$, even for spectra of number rings.","PeriodicalId":8132,"journal":{"name":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"There is no Weil-cohomology theory with real coefficients for arithmetic curves\",\"authors\":\"C. Deninger\",\"doi\":\"10.2422/2036-2145.202204_005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A well known argument by Serre shows that there is no Weil cohomology theory with real coefficients for smooth projective varieties over $\\\\bar{\\\\mathbb{F}}_p$. In this note we explain why no\\\"Weil-\\\"cohomology theory with real coefficients can exist for arithmetic schemes over spec $\\\\mathbb{Z}$, even for spectra of number rings.\",\"PeriodicalId\":8132,\"journal\":{\"name\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2422/2036-2145.202204_005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ANNALI SCUOLA NORMALE SUPERIORE - CLASSE DI SCIENZE","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2422/2036-2145.202204_005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Serre的一个著名论证表明,对于$\bar{\mathbb{F}}_p$上的光滑投影变分,不存在具有实系数的Weil上同调理论。在这篇文章中,我们解释了为什么对于spec $\mathbb{Z}$上的算术格式,甚至对于数环的谱,不存在具有实系数的“Weil-”上同调理论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
There is no Weil-cohomology theory with real coefficients for arithmetic curves
A well known argument by Serre shows that there is no Weil cohomology theory with real coefficients for smooth projective varieties over $\bar{\mathbb{F}}_p$. In this note we explain why no"Weil-"cohomology theory with real coefficients can exist for arithmetic schemes over spec $\mathbb{Z}$, even for spectra of number rings.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信