用于源分离的卷积音频模型的神经网络替代品

Shrikant Venkataramani, Cem Subakan, P. Smaragdis
{"title":"用于源分离的卷积音频模型的神经网络替代品","authors":"Shrikant Venkataramani, Cem Subakan, P. Smaragdis","doi":"10.1109/MLSP.2017.8168108","DOIUrl":null,"url":null,"abstract":"Convolutive Non-Negative Matrix Factorization model factorizes a given audio spectrogram using frequency templates with a temporal dimension. In this paper, we present a convolutional auto-encoder model that acts as a neural network alternative to convolutive NMF. Using the modeling flexibility granted by neural networks, we also explore the idea of using a Recurrent Neural Network in the encoder. Experimental results on speech mixtures from TIMIT dataset indicate that the convolutive architecture provides a significant improvement in separation performance in terms of BSS eval metrics.","PeriodicalId":6542,"journal":{"name":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","volume":"65 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Neural network alternatives toconvolutive audio models for source separation\",\"authors\":\"Shrikant Venkataramani, Cem Subakan, P. Smaragdis\",\"doi\":\"10.1109/MLSP.2017.8168108\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Convolutive Non-Negative Matrix Factorization model factorizes a given audio spectrogram using frequency templates with a temporal dimension. In this paper, we present a convolutional auto-encoder model that acts as a neural network alternative to convolutive NMF. Using the modeling flexibility granted by neural networks, we also explore the idea of using a Recurrent Neural Network in the encoder. Experimental results on speech mixtures from TIMIT dataset indicate that the convolutive architecture provides a significant improvement in separation performance in terms of BSS eval metrics.\",\"PeriodicalId\":6542,\"journal\":{\"name\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"volume\":\"65 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2017.8168108\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 27th International Workshop on Machine Learning for Signal Processing (MLSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2017.8168108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

卷积非负矩阵分解模型使用具有时间维的频率模板来分解给定的音频频谱图。在本文中,我们提出了一个卷积自编码器模型,作为卷积NMF的神经网络替代方案。利用神经网络赋予的建模灵活性,我们还探索了在编码器中使用循环神经网络的想法。对TIMIT数据集混合语音的实验结果表明,从BSS评估指标来看,卷积架构在分离性能上有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neural network alternatives toconvolutive audio models for source separation
Convolutive Non-Negative Matrix Factorization model factorizes a given audio spectrogram using frequency templates with a temporal dimension. In this paper, we present a convolutional auto-encoder model that acts as a neural network alternative to convolutive NMF. Using the modeling flexibility granted by neural networks, we also explore the idea of using a Recurrent Neural Network in the encoder. Experimental results on speech mixtures from TIMIT dataset indicate that the convolutive architecture provides a significant improvement in separation performance in terms of BSS eval metrics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信