线性和非线性弹簧串联质量的非线性振动的近似解

Beyza Bostanci, M. Karahan
{"title":"线性和非线性弹簧串联质量的非线性振动的近似解","authors":"Beyza Bostanci, M. Karahan","doi":"10.18466/CBAYARFBE.397802","DOIUrl":null,"url":null,"abstract":"Nonlinear oscillations of a mass with serial linear and nonlinear stiffness on a frictionless surface is considered. Equation of motion of the considered system is obtained. For analysing of the system, relatively new perturbation method that is named Multiple Scales Lindstedt Poincare (MSLP) and classical multiple scales (MS) methods are used. Both approximate solutions are compared with the numerical solutions for weakly and strongly nonlinear systems. For weakly nonlinear systems, both approximate solutions are in excellent agreement with numerical simulations. However, for strong nonlinearities, MS method is not give reliable results while MSLP method can provide acceptable solutions with numerical solutions.","PeriodicalId":9652,"journal":{"name":"Celal Bayar Universitesi Fen Bilimleri Dergisi","volume":"7 1","pages":"201-207"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Nonlinear Oscillations of a Mass Attached to Linear and Nonlinear Springs in Series Using Approximate Solutions\",\"authors\":\"Beyza Bostanci, M. Karahan\",\"doi\":\"10.18466/CBAYARFBE.397802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nonlinear oscillations of a mass with serial linear and nonlinear stiffness on a frictionless surface is considered. Equation of motion of the considered system is obtained. For analysing of the system, relatively new perturbation method that is named Multiple Scales Lindstedt Poincare (MSLP) and classical multiple scales (MS) methods are used. Both approximate solutions are compared with the numerical solutions for weakly and strongly nonlinear systems. For weakly nonlinear systems, both approximate solutions are in excellent agreement with numerical simulations. However, for strong nonlinearities, MS method is not give reliable results while MSLP method can provide acceptable solutions with numerical solutions.\",\"PeriodicalId\":9652,\"journal\":{\"name\":\"Celal Bayar Universitesi Fen Bilimleri Dergisi\",\"volume\":\"7 1\",\"pages\":\"201-207\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Celal Bayar Universitesi Fen Bilimleri Dergisi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18466/CBAYARFBE.397802\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Celal Bayar Universitesi Fen Bilimleri Dergisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18466/CBAYARFBE.397802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

研究了具有连续线性和非线性刚度的质量在无摩擦表面上的非线性振动。得到了所考虑系统的运动方程。为了对系统进行分析,采用了较新的多尺度Lindstedt Poincare (MSLP)摄动方法和经典的多尺度方法。将两种近似解与弱非线性和强非线性系统的数值解进行了比较。对于弱非线性系统,这两种近似解与数值模拟结果非常吻合。然而,对于强非线性问题,质谱方法不能给出可靠的结果,而MSLP方法可以提供可接受的数值解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nonlinear Oscillations of a Mass Attached to Linear and Nonlinear Springs in Series Using Approximate Solutions
Nonlinear oscillations of a mass with serial linear and nonlinear stiffness on a frictionless surface is considered. Equation of motion of the considered system is obtained. For analysing of the system, relatively new perturbation method that is named Multiple Scales Lindstedt Poincare (MSLP) and classical multiple scales (MS) methods are used. Both approximate solutions are compared with the numerical solutions for weakly and strongly nonlinear systems. For weakly nonlinear systems, both approximate solutions are in excellent agreement with numerical simulations. However, for strong nonlinearities, MS method is not give reliable results while MSLP method can provide acceptable solutions with numerical solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信