双向折纸鼓舞人心的多功能3D超表面

Ruixuan Zheng, R. Pan, Chilh-Hung Sun, Shuo Du, A. Jin, C. Li, Guangzhou Geng, Changzhi Gu, Junjie Li
{"title":"双向折纸鼓舞人心的多功能3D超表面","authors":"Ruixuan Zheng, R. Pan, Chilh-Hung Sun, Shuo Du, A. Jin, C. Li, Guangzhou Geng, Changzhi Gu, Junjie Li","doi":"10.1002/admt.202200373","DOIUrl":null,"url":null,"abstract":"Micro/nano origami is a fascinating 3D fabrication technology, showing a strong ability to control structural space degrees of freedom, but which are usually only able to achieve single‐direction origami and hence its controlling spatial orientation is still limited to a certain extent. Here, the bidirectional origami induced by focused ion beam irradiation is proposed to break through the freedom of structural space control and realize challenging 3D micro/nanofabrication. It is found that the FIB‐induced bidirectional deformation mainly relies on both materials and the ion doses, and the deformation degrees can be tuned by ion irradiated doses, which greatly contributes to construct large numbers of diverse 3D structures. Further, the underlying physics of FIB induced origami are discussed by Monte Carlo simulations along with experiments to reveal that the amounts of atoms sputtering determines the initial direction of deformation. This bidirectional origami exhibits unique capabilities in design and fabrication of versatile 3D metasurface devices. With this strategy, a 3D chiral metasurface composed of an array of bidirectional folded split ring resonators is achieved, showing a giant circular dichorism as high as 0.78/0.85 (Experiment/Simulation) in the mid‐infrared region. Such powerful bidirectional origami paves high efficiency approach to broaden 3D micro/nano photonics device.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Bidirectional Origami Inspiring Versatile 3D Metasurface\",\"authors\":\"Ruixuan Zheng, R. Pan, Chilh-Hung Sun, Shuo Du, A. Jin, C. Li, Guangzhou Geng, Changzhi Gu, Junjie Li\",\"doi\":\"10.1002/admt.202200373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Micro/nano origami is a fascinating 3D fabrication technology, showing a strong ability to control structural space degrees of freedom, but which are usually only able to achieve single‐direction origami and hence its controlling spatial orientation is still limited to a certain extent. Here, the bidirectional origami induced by focused ion beam irradiation is proposed to break through the freedom of structural space control and realize challenging 3D micro/nanofabrication. It is found that the FIB‐induced bidirectional deformation mainly relies on both materials and the ion doses, and the deformation degrees can be tuned by ion irradiated doses, which greatly contributes to construct large numbers of diverse 3D structures. Further, the underlying physics of FIB induced origami are discussed by Monte Carlo simulations along with experiments to reveal that the amounts of atoms sputtering determines the initial direction of deformation. This bidirectional origami exhibits unique capabilities in design and fabrication of versatile 3D metasurface devices. With this strategy, a 3D chiral metasurface composed of an array of bidirectional folded split ring resonators is achieved, showing a giant circular dichorism as high as 0.78/0.85 (Experiment/Simulation) in the mid‐infrared region. Such powerful bidirectional origami paves high efficiency approach to broaden 3D micro/nano photonics device.\",\"PeriodicalId\":7200,\"journal\":{\"name\":\"Advanced Materials & Technologies\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials & Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/admt.202200373\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200373","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

微纳折纸是一种令人着迷的三维制造技术,具有很强的结构空间自由度控制能力,但通常只能实现单向折纸,因此其对空间方向的控制仍然受到一定的限制。本文提出利用聚焦离子束辐照诱导双向折纸,突破结构空间控制的自由,实现具有挑战性的三维微纳加工。发现FIB诱导的双向变形主要依赖于材料和离子剂量,并且变形程度可以通过离子辐照剂量来调节,这对构建大量不同的三维结构有很大的帮助。此外,通过蒙特卡罗模拟和实验讨论了FIB诱导折纸的基本物理特性,揭示了溅射原子的数量决定了变形的初始方向。这种双向折纸展示了设计和制造多功能三维超表面设备的独特能力。利用该策略,实现了由双向折叠分裂环谐振器阵列组成的三维手性超表面,在中红外区域显示出高达0.78/0.85(实验/模拟)的巨大圆二色性。这种强大的双向折纸技术为拓展三维微纳光子学器件提供了高效途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bidirectional Origami Inspiring Versatile 3D Metasurface
Micro/nano origami is a fascinating 3D fabrication technology, showing a strong ability to control structural space degrees of freedom, but which are usually only able to achieve single‐direction origami and hence its controlling spatial orientation is still limited to a certain extent. Here, the bidirectional origami induced by focused ion beam irradiation is proposed to break through the freedom of structural space control and realize challenging 3D micro/nanofabrication. It is found that the FIB‐induced bidirectional deformation mainly relies on both materials and the ion doses, and the deformation degrees can be tuned by ion irradiated doses, which greatly contributes to construct large numbers of diverse 3D structures. Further, the underlying physics of FIB induced origami are discussed by Monte Carlo simulations along with experiments to reveal that the amounts of atoms sputtering determines the initial direction of deformation. This bidirectional origami exhibits unique capabilities in design and fabrication of versatile 3D metasurface devices. With this strategy, a 3D chiral metasurface composed of an array of bidirectional folded split ring resonators is achieved, showing a giant circular dichorism as high as 0.78/0.85 (Experiment/Simulation) in the mid‐infrared region. Such powerful bidirectional origami paves high efficiency approach to broaden 3D micro/nano photonics device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信