Fabrice Katzberg, Radoslaw Mazur, M. Maass, P. Koch, A. Mertins
{"title":"使用移动麦克风的声场压缩采样","authors":"Fabrice Katzberg, Radoslaw Mazur, M. Maass, P. Koch, A. Mertins","doi":"10.1109/ICASSP.2018.8461519","DOIUrl":null,"url":null,"abstract":"For conventional sampling of sound-fields, the measurement in space by use of stationary microphones is impractical for high audio frequencies. Satisfying the Nyquist-Shannon sampling theorem requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration and spatial positioning of a large number of microphones. Dynamic sound-field measurements involving tracked microphones may weaken this spatial sampling problem. However, for aliasing-free reconstruction, there is still the need of sampling a huge number of unknown sound-field variables. Thus in real-world applications, the trajectories may be expected to lead to underdetermined sampling problems. In this paper, we present a compressed sensing framework that allows for stable and robust sub-Nyquist sampling of sound fields by use of moving microphones.","PeriodicalId":6638,"journal":{"name":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"85 1","pages":"181-185"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Compressive Sampling of Sound Fields Using Moving Microphones\",\"authors\":\"Fabrice Katzberg, Radoslaw Mazur, M. Maass, P. Koch, A. Mertins\",\"doi\":\"10.1109/ICASSP.2018.8461519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For conventional sampling of sound-fields, the measurement in space by use of stationary microphones is impractical for high audio frequencies. Satisfying the Nyquist-Shannon sampling theorem requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration and spatial positioning of a large number of microphones. Dynamic sound-field measurements involving tracked microphones may weaken this spatial sampling problem. However, for aliasing-free reconstruction, there is still the need of sampling a huge number of unknown sound-field variables. Thus in real-world applications, the trajectories may be expected to lead to underdetermined sampling problems. In this paper, we present a compressed sensing framework that allows for stable and robust sub-Nyquist sampling of sound fields by use of moving microphones.\",\"PeriodicalId\":6638,\"journal\":{\"name\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":\"85 1\",\"pages\":\"181-185\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP.2018.8461519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2018.8461519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressive Sampling of Sound Fields Using Moving Microphones
For conventional sampling of sound-fields, the measurement in space by use of stationary microphones is impractical for high audio frequencies. Satisfying the Nyquist-Shannon sampling theorem requires a huge number of sampling points and entails other difficulties, such as the need for exact calibration and spatial positioning of a large number of microphones. Dynamic sound-field measurements involving tracked microphones may weaken this spatial sampling problem. However, for aliasing-free reconstruction, there is still the need of sampling a huge number of unknown sound-field variables. Thus in real-world applications, the trajectories may be expected to lead to underdetermined sampling problems. In this paper, we present a compressed sensing framework that allows for stable and robust sub-Nyquist sampling of sound fields by use of moving microphones.