PALM:迭代调试的机器学习解释

S. Krishnan, Eugene Wu
{"title":"PALM:迭代调试的机器学习解释","authors":"S. Krishnan, Eugene Wu","doi":"10.1145/3077257.3077271","DOIUrl":null,"url":null,"abstract":"When a Deep Neural Network makes a misprediction, it can be challenging for a developer to understand why. While there are many models for interpretability in terms of predictive features, it may be more natural to isolate a small set of training examples that have the greatest influence on the prediction. However, it is often the case that every training example contributes to a prediction in some way but with varying degrees of responsibility. We present Partition Aware Local Model (PALM), which is a tool that learns and summarizes this responsibility structure to aide machine learning debugging. PALM approximates a complex model (e.g., a deep neural network) using a two-part surrogate model: a meta-model that partitions the training data, and a set of sub-models that approximate the patterns within each partition. These sub-models can be arbitrarily complex to capture intricate local patterns. However, the meta-model is constrained to be a decision tree. This way the user can examine the structure of the meta-model, determine whether the rules match intuition, and link problematic test examples to responsible training data efficiently. Queries to PALM are nearly 30x faster than nearest neighbor queries for identifying relevant data, which is a key property for interactive applications.","PeriodicalId":92279,"journal":{"name":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"59","resultStr":"{\"title\":\"PALM: Machine Learning Explanations For Iterative Debugging\",\"authors\":\"S. Krishnan, Eugene Wu\",\"doi\":\"10.1145/3077257.3077271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When a Deep Neural Network makes a misprediction, it can be challenging for a developer to understand why. While there are many models for interpretability in terms of predictive features, it may be more natural to isolate a small set of training examples that have the greatest influence on the prediction. However, it is often the case that every training example contributes to a prediction in some way but with varying degrees of responsibility. We present Partition Aware Local Model (PALM), which is a tool that learns and summarizes this responsibility structure to aide machine learning debugging. PALM approximates a complex model (e.g., a deep neural network) using a two-part surrogate model: a meta-model that partitions the training data, and a set of sub-models that approximate the patterns within each partition. These sub-models can be arbitrarily complex to capture intricate local patterns. However, the meta-model is constrained to be a decision tree. This way the user can examine the structure of the meta-model, determine whether the rules match intuition, and link problematic test examples to responsible training data efficiently. Queries to PALM are nearly 30x faster than nearest neighbor queries for identifying relevant data, which is a key property for interactive applications.\",\"PeriodicalId\":92279,\"journal\":{\"name\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"59\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077257.3077271\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd Workshop on Human-In-the-Loop Data Analytics. Workshop on Human-In-the-Loop Data Analytics (2nd : 2017 : Chicago, Ill.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077257.3077271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

摘要

当深度神经网络做出错误预测时,开发人员很难理解其中的原因。虽然在预测特征方面有许多可解释性模型,但隔离一小组对预测影响最大的训练示例可能更自然。然而,通常情况下,每个训练示例都以某种方式对预测做出贡献,但责任程度不同。我们提出分区感知局部模型(PALM),它是一个学习和总结这种责任结构的工具,以帮助机器学习调试。PALM使用两部分代理模型来近似复杂模型(例如,深度神经网络):一个划分训练数据的元模型,以及一组近似每个分区内模式的子模型。这些子模型可以任意复杂,以捕获复杂的本地模式。然而,元模型被约束为决策树。通过这种方式,用户可以检查元模型的结构,确定规则是否符合直觉,并有效地将有问题的测试示例链接到负责任的训练数据。在识别相关数据方面,对PALM的查询比最近邻查询快近30倍,这是交互式应用程序的一个关键属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PALM: Machine Learning Explanations For Iterative Debugging
When a Deep Neural Network makes a misprediction, it can be challenging for a developer to understand why. While there are many models for interpretability in terms of predictive features, it may be more natural to isolate a small set of training examples that have the greatest influence on the prediction. However, it is often the case that every training example contributes to a prediction in some way but with varying degrees of responsibility. We present Partition Aware Local Model (PALM), which is a tool that learns and summarizes this responsibility structure to aide machine learning debugging. PALM approximates a complex model (e.g., a deep neural network) using a two-part surrogate model: a meta-model that partitions the training data, and a set of sub-models that approximate the patterns within each partition. These sub-models can be arbitrarily complex to capture intricate local patterns. However, the meta-model is constrained to be a decision tree. This way the user can examine the structure of the meta-model, determine whether the rules match intuition, and link problematic test examples to responsible training data efficiently. Queries to PALM are nearly 30x faster than nearest neighbor queries for identifying relevant data, which is a key property for interactive applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信