各向异性阻抗楔的高频衍射研究进展

G. Manara, P. Nepa
{"title":"各向异性阻抗楔的高频衍射研究进展","authors":"G. Manara, P. Nepa","doi":"10.1109/APWC.2012.6324944","DOIUrl":null,"url":null,"abstract":"The Geometrical Theory of Diffraction (GTD) and its uniform version (UTD, Uniform Geometrical Theory of Diffraction) have been extensively applied to wedge scattering problems, where the surfaces of the scatterer are modeled with perfectly conducting boundary conditions. GTD/UTD diffraction coefficients for wedges characterized by isotropic impedance boundary conditions have also been derived. This paper provide a review of the solutions available in the open literature for the scattering from anisotropic impedance wedges.","PeriodicalId":6393,"journal":{"name":"2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2012-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"High-frequency diffraction by anisotropic impedance wedges: A review\",\"authors\":\"G. Manara, P. Nepa\",\"doi\":\"10.1109/APWC.2012.6324944\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Geometrical Theory of Diffraction (GTD) and its uniform version (UTD, Uniform Geometrical Theory of Diffraction) have been extensively applied to wedge scattering problems, where the surfaces of the scatterer are modeled with perfectly conducting boundary conditions. GTD/UTD diffraction coefficients for wedges characterized by isotropic impedance boundary conditions have also been derived. This paper provide a review of the solutions available in the open literature for the scattering from anisotropic impedance wedges.\",\"PeriodicalId\":6393,\"journal\":{\"name\":\"2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APWC.2012.6324944\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APWC.2012.6324944","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

几何衍射理论(GTD)及其均匀版本(UTD, uniform geometric Theory of Diffraction)已被广泛应用于楔形散射问题,其中散射体表面是用完美传导的边界条件来建模的。导出了各向同性阻抗边界条件下楔形的GTD/UTD衍射系数。本文综述了各向异性阻抗楔散射问题的现有解决方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
High-frequency diffraction by anisotropic impedance wedges: A review
The Geometrical Theory of Diffraction (GTD) and its uniform version (UTD, Uniform Geometrical Theory of Diffraction) have been extensively applied to wedge scattering problems, where the surfaces of the scatterer are modeled with perfectly conducting boundary conditions. GTD/UTD diffraction coefficients for wedges characterized by isotropic impedance boundary conditions have also been derived. This paper provide a review of the solutions available in the open literature for the scattering from anisotropic impedance wedges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信