基于FPGA的多层感知器网络集成训练算法

Alvaro Narciso Perez-Garcia, Gerardo Marcos Tornez-Xavier, L. M. Flores-Nava, F. Gómez-Castañeda, J. Moreno-Cadenas
{"title":"基于FPGA的多层感知器网络集成训练算法","authors":"Alvaro Narciso Perez-Garcia, Gerardo Marcos Tornez-Xavier, L. M. Flores-Nava, F. Gómez-Castañeda, J. Moreno-Cadenas","doi":"10.1109/ICEEE.2014.6978300","DOIUrl":null,"url":null,"abstract":"In this manuscript we present the implementation of an artificial neural network type Multilayer Perceptron (ANN-MP or NNMP) in Field-Programmable Gate Arrays (FPGA), including Back-Propagation training method based on descendent gradient. This network has 2 reconfigurable hidden layers, adjustable parameters (epochs and ratio learning) and batch learning. The proposed architecture aims to reduce the number of logical elements to be used, so serial processing is utilized. In order to test the performance of the trained network, a nonlinear function was approximated with satisfactory results.","PeriodicalId":6661,"journal":{"name":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","volume":"77 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Multilayer perceptron network with integrated training algorithm in FPGA\",\"authors\":\"Alvaro Narciso Perez-Garcia, Gerardo Marcos Tornez-Xavier, L. M. Flores-Nava, F. Gómez-Castañeda, J. Moreno-Cadenas\",\"doi\":\"10.1109/ICEEE.2014.6978300\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this manuscript we present the implementation of an artificial neural network type Multilayer Perceptron (ANN-MP or NNMP) in Field-Programmable Gate Arrays (FPGA), including Back-Propagation training method based on descendent gradient. This network has 2 reconfigurable hidden layers, adjustable parameters (epochs and ratio learning) and batch learning. The proposed architecture aims to reduce the number of logical elements to be used, so serial processing is utilized. In order to test the performance of the trained network, a nonlinear function was approximated with satisfactory results.\",\"PeriodicalId\":6661,\"journal\":{\"name\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"volume\":\"77 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEE.2014.6978300\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEE.2014.6978300","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

在本文中,我们介绍了在现场可编程门阵列(FPGA)中实现的人工神经网络型多层感知器(ANN-MP或NNMP),包括基于下降梯度的反向传播训练方法。该网络具有2个可重构的隐藏层,可调参数(epoch和ratio学习)和批处理学习。所提出的体系结构旨在减少要使用的逻辑元素的数量,因此使用串行处理。为了测试训练网络的性能,对一个非线性函数进行了近似,得到了满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilayer perceptron network with integrated training algorithm in FPGA
In this manuscript we present the implementation of an artificial neural network type Multilayer Perceptron (ANN-MP or NNMP) in Field-Programmable Gate Arrays (FPGA), including Back-Propagation training method based on descendent gradient. This network has 2 reconfigurable hidden layers, adjustable parameters (epochs and ratio learning) and batch learning. The proposed architecture aims to reduce the number of logical elements to be used, so serial processing is utilized. In order to test the performance of the trained network, a nonlinear function was approximated with satisfactory results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信