N. Abrosimova, S. Bortnikova, A. Edelev, V. Chernukhin, A. Reutsky, Nikolay Abrosimov, Ivan Gundyrev
{"title":"俄罗斯克麦罗沃地区共青城尾矿周围土壤和尾矿的地球化学和微生物组成","authors":"N. Abrosimova, S. Bortnikova, A. Edelev, V. Chernukhin, A. Reutsky, Nikolay Abrosimov, Ivan Gundyrev","doi":"10.3390/bacteria2030009","DOIUrl":null,"url":null,"abstract":"Microorganisms have the potential to address environmental pollution, but the interaction mechanism between microorganisms and mine tailings is not well understood. This work was aimed at determining the bacterial isolates in soils and mine tailings and evaluating the distribution of metals, antimony (Sb), and arsenic (As) in the soils around the Komsomolsk tailings. Areas with high concentrations of As, Sb, cadmium (Cd), and lead (Pb) were found. Assessment based on the value of the contamination factor (CF) indicated large-scale As, Sb, Pb, Cd, iron (Fe), bismuth (Bi), and beryllium (Be) pollution, especially in soils sampled from the northeast direction of the mine tailings. Soils had a higher number of CFUs per g of dry weight than did the tailings, ranging from 84 × 106 to 3.1 × 109 and from 20 × 106 to 1.7 × 109, respectively. Arsenic exhibited a positive statistical correlation with the number of CFUs of Agrococcus and Staphylococcus. In addition, a positive correlation was found between the concentration of Co and the number of CFUs of Moraxella and Microbacterium. The Sb exhibited a positive correlation with Streptomyces. These results can be used to develop methods for waste reclamation, including the use of isolated bacterial strains for arsenic removal by precipitation.","PeriodicalId":18020,"journal":{"name":"Lactic Acid Bacteria","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geochemical and Microbiological Composition of Soils and Tailings Surrounding the Komsomolsk Tailings, Kemerovo Region, Russia\",\"authors\":\"N. Abrosimova, S. Bortnikova, A. Edelev, V. Chernukhin, A. Reutsky, Nikolay Abrosimov, Ivan Gundyrev\",\"doi\":\"10.3390/bacteria2030009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Microorganisms have the potential to address environmental pollution, but the interaction mechanism between microorganisms and mine tailings is not well understood. This work was aimed at determining the bacterial isolates in soils and mine tailings and evaluating the distribution of metals, antimony (Sb), and arsenic (As) in the soils around the Komsomolsk tailings. Areas with high concentrations of As, Sb, cadmium (Cd), and lead (Pb) were found. Assessment based on the value of the contamination factor (CF) indicated large-scale As, Sb, Pb, Cd, iron (Fe), bismuth (Bi), and beryllium (Be) pollution, especially in soils sampled from the northeast direction of the mine tailings. Soils had a higher number of CFUs per g of dry weight than did the tailings, ranging from 84 × 106 to 3.1 × 109 and from 20 × 106 to 1.7 × 109, respectively. Arsenic exhibited a positive statistical correlation with the number of CFUs of Agrococcus and Staphylococcus. In addition, a positive correlation was found between the concentration of Co and the number of CFUs of Moraxella and Microbacterium. The Sb exhibited a positive correlation with Streptomyces. These results can be used to develop methods for waste reclamation, including the use of isolated bacterial strains for arsenic removal by precipitation.\",\"PeriodicalId\":18020,\"journal\":{\"name\":\"Lactic Acid Bacteria\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lactic Acid Bacteria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/bacteria2030009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lactic Acid Bacteria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/bacteria2030009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Geochemical and Microbiological Composition of Soils and Tailings Surrounding the Komsomolsk Tailings, Kemerovo Region, Russia
Microorganisms have the potential to address environmental pollution, but the interaction mechanism between microorganisms and mine tailings is not well understood. This work was aimed at determining the bacterial isolates in soils and mine tailings and evaluating the distribution of metals, antimony (Sb), and arsenic (As) in the soils around the Komsomolsk tailings. Areas with high concentrations of As, Sb, cadmium (Cd), and lead (Pb) were found. Assessment based on the value of the contamination factor (CF) indicated large-scale As, Sb, Pb, Cd, iron (Fe), bismuth (Bi), and beryllium (Be) pollution, especially in soils sampled from the northeast direction of the mine tailings. Soils had a higher number of CFUs per g of dry weight than did the tailings, ranging from 84 × 106 to 3.1 × 109 and from 20 × 106 to 1.7 × 109, respectively. Arsenic exhibited a positive statistical correlation with the number of CFUs of Agrococcus and Staphylococcus. In addition, a positive correlation was found between the concentration of Co and the number of CFUs of Moraxella and Microbacterium. The Sb exhibited a positive correlation with Streptomyces. These results can be used to develop methods for waste reclamation, including the use of isolated bacterial strains for arsenic removal by precipitation.