轴向移动谐波荷载作用下swcnts纵向动力响应的解析解

F. Khosravi, M. Simyari, S. A. Hosseini, M. Ghadiri
{"title":"轴向移动谐波荷载作用下swcnts纵向动力响应的解析解","authors":"F. Khosravi, M. Simyari, S. A. Hosseini, M. Ghadiri","doi":"10.22034/JSM.2019.1875642.1476","DOIUrl":null,"url":null,"abstract":"The main purposes of the present work are devoted to the investigation of the free axial vibration, as well as the time-dependent and forced axial vibration of a SWCNT subjected to a moving load. The governing equation is derived through using Hamilton's principle. Eringen’s nonlocal elasticity theory has been utilized to analyze the nonlocal behaviors of SWCNT. A Galerkin method based on a closed-form solution is applied to solve the governing equation. The boundary conditions are considered as clamped-clamped (C-C) and clamped-free (C-F). Firstly, the nondimensional natural frequencies are calculated, as well as the influence of the nonlocal parameter on them are explained. The results of both boundary conditions are compared together, and both of them are compared to the results of another study to verify the accuracy and efficiency of the present results. The novelty of this work is related to the study of the dynamic forced axial vibration due to the axial moving harmonic force in the time domain. The previously forced vibration studies were devoted to the transverse vibrations. The effect of the geometrical parameters, velocity of the moving load, excitation frequency, as well as the small-scale effect, are explained and discussed in this context. According to the lack of accomplished studies in this field, the present work has the potential to be used as a benchmark for future works.","PeriodicalId":17126,"journal":{"name":"Journal of Solid Mechanics and Materials Engineering","volume":"43 1","pages":"586-599"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An Analytical Solution on Size Dependent Longitudinal Dynamic Response of SWCNT Under Axial Moving Harmonic Load\",\"authors\":\"F. Khosravi, M. Simyari, S. A. Hosseini, M. Ghadiri\",\"doi\":\"10.22034/JSM.2019.1875642.1476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The main purposes of the present work are devoted to the investigation of the free axial vibration, as well as the time-dependent and forced axial vibration of a SWCNT subjected to a moving load. The governing equation is derived through using Hamilton's principle. Eringen’s nonlocal elasticity theory has been utilized to analyze the nonlocal behaviors of SWCNT. A Galerkin method based on a closed-form solution is applied to solve the governing equation. The boundary conditions are considered as clamped-clamped (C-C) and clamped-free (C-F). Firstly, the nondimensional natural frequencies are calculated, as well as the influence of the nonlocal parameter on them are explained. The results of both boundary conditions are compared together, and both of them are compared to the results of another study to verify the accuracy and efficiency of the present results. The novelty of this work is related to the study of the dynamic forced axial vibration due to the axial moving harmonic force in the time domain. The previously forced vibration studies were devoted to the transverse vibrations. The effect of the geometrical parameters, velocity of the moving load, excitation frequency, as well as the small-scale effect, are explained and discussed in this context. According to the lack of accomplished studies in this field, the present work has the potential to be used as a benchmark for future works.\",\"PeriodicalId\":17126,\"journal\":{\"name\":\"Journal of Solid Mechanics and Materials Engineering\",\"volume\":\"43 1\",\"pages\":\"586-599\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Solid Mechanics and Materials Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22034/JSM.2019.1875642.1476\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Solid Mechanics and Materials Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22034/JSM.2019.1875642.1476","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文的主要目的是研究受移动载荷作用下的swcnts的自由轴向振动、随时间变化的轴向振动和受迫轴向振动。利用汉密尔顿原理推导了控制方程。利用Eringen的非局部弹性理论分析了碳纳米管的非局部行为。采用基于闭型解的伽辽金方法求解控制方程。边界条件分为夹固-夹固(C-C)和无夹固(C-F)两种。首先,计算了非量纲固有频率,并解释了非局域参数对其的影响。对两种边界条件的结果进行了比较,并与另一项研究的结果进行了比较,以验证本文结果的准确性和有效性。本工作的新颖之处在于对轴向运动谐力在时域内引起的轴向动态强迫振动的研究。以往的强迫振动研究主要集中在横向振动上。在此背景下,解释和讨论了几何参数、运动载荷速度、激励频率以及小尺度效应的影响。鉴于这一领域缺乏成熟的研究,本研究有可能作为未来工作的基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Analytical Solution on Size Dependent Longitudinal Dynamic Response of SWCNT Under Axial Moving Harmonic Load
The main purposes of the present work are devoted to the investigation of the free axial vibration, as well as the time-dependent and forced axial vibration of a SWCNT subjected to a moving load. The governing equation is derived through using Hamilton's principle. Eringen’s nonlocal elasticity theory has been utilized to analyze the nonlocal behaviors of SWCNT. A Galerkin method based on a closed-form solution is applied to solve the governing equation. The boundary conditions are considered as clamped-clamped (C-C) and clamped-free (C-F). Firstly, the nondimensional natural frequencies are calculated, as well as the influence of the nonlocal parameter on them are explained. The results of both boundary conditions are compared together, and both of them are compared to the results of another study to verify the accuracy and efficiency of the present results. The novelty of this work is related to the study of the dynamic forced axial vibration due to the axial moving harmonic force in the time domain. The previously forced vibration studies were devoted to the transverse vibrations. The effect of the geometrical parameters, velocity of the moving load, excitation frequency, as well as the small-scale effect, are explained and discussed in this context. According to the lack of accomplished studies in this field, the present work has the potential to be used as a benchmark for future works.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信