V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich
{"title":"磁场对蒸馏水光密度的影响","authors":"V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich","doi":"10.15407/pmach2023.02.033","DOIUrl":null,"url":null,"abstract":"Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Magnetic Field on Optical Density of Distilled Water\",\"authors\":\"V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich\",\"doi\":\"10.15407/pmach2023.02.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.02.033\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.02.033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Effect of Magnetic Field on Optical Density of Distilled Water
Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.