V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich
{"title":"磁场对蒸馏水光密度的影响","authors":"V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich","doi":"10.15407/pmach2023.02.033","DOIUrl":null,"url":null,"abstract":"Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.","PeriodicalId":16166,"journal":{"name":"Journal of Mechanical Engineering and Sciences","volume":"97 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Magnetic Field on Optical Density of Distilled Water\",\"authors\":\"V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich\",\"doi\":\"10.15407/pmach2023.02.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.\",\"PeriodicalId\":16166,\"journal\":{\"name\":\"Journal of Mechanical Engineering and Sciences\",\"volume\":\"97 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Engineering and Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.02.033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Engineering and Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.02.033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Effect of Magnetic Field on Optical Density of Distilled Water
Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.
期刊介绍:
The Journal of Mechanical Engineering & Sciences "JMES" (ISSN (Print): 2289-4659; e-ISSN: 2231-8380) is an open access peer-review journal (Indexed by Emerging Source Citation Index (ESCI), WOS; SCOPUS Index (Elsevier); EBSCOhost; Index Copernicus; Ulrichsweb, DOAJ, Google Scholar) which publishes original and review articles that advance the understanding of both the fundamentals of engineering science and its application to the solution of challenges and problems in mechanical engineering systems, machines and components. It is particularly concerned with the demonstration of engineering science solutions to specific industrial problems. Original contributions providing insight into the use of analytical, computational modeling, structural mechanics, metal forming, behavior and application of advanced materials, impact mechanics, strain localization and other effects of nonlinearity, fluid mechanics, robotics, tribology, thermodynamics, and materials processing generally from the core of the journal contents are encouraged. Only original, innovative and novel papers will be considered for publication in the JMES. The authors are required to confirm that their paper has not been submitted to any other journal in English or any other language. The JMES welcome contributions from all who wishes to report on new developments and latest findings in mechanical engineering.