磁场对蒸馏水光密度的影响

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich
{"title":"磁场对蒸馏水光密度的影响","authors":"V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich","doi":"10.15407/pmach2023.02.033","DOIUrl":null,"url":null,"abstract":"Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effect of Magnetic Field on Optical Density of Distilled Water\",\"authors\":\"V. H. Mykhailenko, Yevhen F. Lukianov, Olha I. Lukianova, Tamara S. Vitkovska, Oleksandr Ye. Khinievich\",\"doi\":\"10.15407/pmach2023.02.033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.15407/pmach2023.02.033\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15407/pmach2023.02.033","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

水被认为是湿式汽轮机机组的工作流体。指出了有目的地改变用于满足能源需求的水的热物理性质的重要性。提出了一种无试剂(永磁体横向磁场)影响水的方法。文献数据,目前可获得的论文,专门研究水的性质是提出。结果表明,外界物理场对水的物理化学和热物理性质的影响机理至今尚未阐明。需要强调的是,蒸馏水在暴露于物理场期间和暴露于物理场之后的特性研究就更少了。考虑了目前关于水的性质的理论观念与实验结果之间存在的矛盾。研究发现,目前还没有正确的方法和设备能够实时指示水的性质变化。为此,提出了蒸馏水光密度分析的设备和方法。分析了物理场对水光密度影响的现有实验工作的不足。制定了用于测量蒸馏水光密度的设备的要求。对影响蒸馏水光密度的磁场感应强度与光密度的关系进行了实验研究。证明了磁场对蒸馏水红外波长范围内光密度的影响,根据磁场感应强度和水流通过磁化装置工作段的速度,分别呈增大方向(4.1%)和减小方向(1.7%)的变化。提出了一个解释所得结果的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Effect of Magnetic Field on Optical Density of Distilled Water
Water is considered as the working fluid of wet steam turbine units. The importance of a purposeful change in the thermophysical properties of water used for energy needs is indicated. A reagent-free method (transverse magnetic field of permanent magnets) of influence on water is proposed. Literature data on currently available papers dedicated to the study of water properties is presented. It is shown that the mechanisms of influence of external physical fields on the physicochemical and thermophysical properties of water have not been elucidated as of now. It is emphasized that the properties of distilled water during exposure and after exposure to physical fields are even less studied. The currently existing contradictions between theoretical ideas about the properties of water and experimental results are considered. It was found that currently there are no correct methods and equipment capable of indicating changes in water properties in real time. As a solution, the equipment and method of analyzing the optical density of distilled water is proposed. The shortcomings of most existing experimental works on the study of the influence of physical fields on the optical density of water are analyzed. The requirements for devices intended for measuring the optical density of distilled water are formulated. A stand was made and experimental work on the study of the dependence of the optical density of distilled water on the induction of a magnetic field that affects it was carried out. It is proved that the magnetic field affects the optical density of distilled water in the infrared range of wavelengths both in the direction of increase (4.1%) and in the direction of decrease (1.7%) depending on the induction of the magnetic field and the speed of water flow through the working section of magnetization device. A hypothesis explaining the obtained result is proposed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信