{"title":"公式是相互否定的类型","authors":"Guillaume Munch-Maccagnoni","doi":"10.1145/2603088.2603156","DOIUrl":null,"url":null,"abstract":"Negation is not involutive in the λC calculus because it does not distinguish captured stacks from continuations. We show that there is a formulae-as-types correspondence between the involutive negation in proof theory, and a notion of high-level access to the stacks studied by Felleisen and Clements. We introduce polarised, untyped, calculi compatible with extensionality, for both of classical sequent calculus and classical natural deduction, with connectives for an involutive negation. The involution is due to the ℓ delimited control operator that we introduce, which allows us to implement the idea that captured stacks, unlike continuations, can be inspected. Delimiting control also gives a constructive interpretation to falsity. We describe the isomorphism there is between A and ¬¬A, and thus between ¬∀ and ∃¬.","PeriodicalId":20649,"journal":{"name":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2014-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Formulae-as-types for an involutive negation\",\"authors\":\"Guillaume Munch-Maccagnoni\",\"doi\":\"10.1145/2603088.2603156\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Negation is not involutive in the λC calculus because it does not distinguish captured stacks from continuations. We show that there is a formulae-as-types correspondence between the involutive negation in proof theory, and a notion of high-level access to the stacks studied by Felleisen and Clements. We introduce polarised, untyped, calculi compatible with extensionality, for both of classical sequent calculus and classical natural deduction, with connectives for an involutive negation. The involution is due to the ℓ delimited control operator that we introduce, which allows us to implement the idea that captured stacks, unlike continuations, can be inspected. Delimiting control also gives a constructive interpretation to falsity. We describe the isomorphism there is between A and ¬¬A, and thus between ¬∀ and ∃¬.\",\"PeriodicalId\":20649,\"journal\":{\"name\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2603088.2603156\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2603088.2603156","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Negation is not involutive in the λC calculus because it does not distinguish captured stacks from continuations. We show that there is a formulae-as-types correspondence between the involutive negation in proof theory, and a notion of high-level access to the stacks studied by Felleisen and Clements. We introduce polarised, untyped, calculi compatible with extensionality, for both of classical sequent calculus and classical natural deduction, with connectives for an involutive negation. The involution is due to the ℓ delimited control operator that we introduce, which allows us to implement the idea that captured stacks, unlike continuations, can be inspected. Delimiting control also gives a constructive interpretation to falsity. We describe the isomorphism there is between A and ¬¬A, and thus between ¬∀ and ∃¬.