太阳能电池微裂纹检测的对比学习

Yiqin Wang, Shuo Shan, Nawei Zhang, Kanjian Zhang, Haikun Wei
{"title":"太阳能电池微裂纹检测的对比学习","authors":"Yiqin Wang, Shuo Shan, Nawei Zhang, Kanjian Zhang, Haikun Wei","doi":"10.1117/12.2604745","DOIUrl":null,"url":null,"abstract":"As the core component of the photovoltaic system, the quality of solar cells determines the conversion efficiency of electric energy. Some strategies have been proposed to detect the crack of solar cells, but most of them can not detect the crack efficiently. This paper proposed a new two-stage method for microcrack detection in polycrystalline images based on contrastive learning. First, the input picture without a label is learned by SimCLR to obtain the representation of the image. In the second stage, the linear classifier is trained based on the fixed encoder and the representation. In the comparative experiment, unsupervised contrastive learning is compared with cross-entropy training and supervised contrastive learning. The experimental results show that the linear classifier trained on unsupervised representation achieves a top-1 accuracy of 78.39%, which is 7.42% higher than the supervised contrastive learning method, compared with supervised learning, the results are comparable.","PeriodicalId":90079,"journal":{"name":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","volume":"29 1","pages":"119130G - 119130G-7"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrastive learning for solar cell micro-crack detection\",\"authors\":\"Yiqin Wang, Shuo Shan, Nawei Zhang, Kanjian Zhang, Haikun Wei\",\"doi\":\"10.1117/12.2604745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As the core component of the photovoltaic system, the quality of solar cells determines the conversion efficiency of electric energy. Some strategies have been proposed to detect the crack of solar cells, but most of them can not detect the crack efficiently. This paper proposed a new two-stage method for microcrack detection in polycrystalline images based on contrastive learning. First, the input picture without a label is learned by SimCLR to obtain the representation of the image. In the second stage, the linear classifier is trained based on the fixed encoder and the representation. In the comparative experiment, unsupervised contrastive learning is compared with cross-entropy training and supervised contrastive learning. The experimental results show that the linear classifier trained on unsupervised representation achieves a top-1 accuracy of 78.39%, which is 7.42% higher than the supervised contrastive learning method, compared with supervised learning, the results are comparable.\",\"PeriodicalId\":90079,\"journal\":{\"name\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"volume\":\"29 1\",\"pages\":\"119130G - 119130G-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2604745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"... International Workshop on Pattern Recognition in NeuroImaging. International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2604745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

作为光伏系统的核心部件,太阳能电池的质量决定了电能的转换效率。目前已经提出了一些检测太阳能电池裂纹的方法,但大多数方法都不能有效地检测出裂纹。提出了一种基于对比学习的两阶段多晶图像微裂纹检测方法。首先,SimCLR对没有标签的输入图片进行学习,得到图像的表示。在第二阶段,基于固定的编码器和表示来训练线性分类器。在对比实验中,将无监督对比学习与交叉熵训练和有监督对比学习进行了比较。实验结果表明,基于无监督表示训练的线性分类器达到了78.39%的top-1准确率,比有监督对比学习方法提高了7.42%,与有监督学习方法相比,结果具有可比性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Contrastive learning for solar cell micro-crack detection
As the core component of the photovoltaic system, the quality of solar cells determines the conversion efficiency of electric energy. Some strategies have been proposed to detect the crack of solar cells, but most of them can not detect the crack efficiently. This paper proposed a new two-stage method for microcrack detection in polycrystalline images based on contrastive learning. First, the input picture without a label is learned by SimCLR to obtain the representation of the image. In the second stage, the linear classifier is trained based on the fixed encoder and the representation. In the comparative experiment, unsupervised contrastive learning is compared with cross-entropy training and supervised contrastive learning. The experimental results show that the linear classifier trained on unsupervised representation achieves a top-1 accuracy of 78.39%, which is 7.42% higher than the supervised contrastive learning method, compared with supervised learning, the results are comparable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信