{"title":"基于云深度学习系统的医学图像诊断","authors":"M. Jacobs, A. Arfan, A. Sheta","doi":"10.14419/ijet.v10i2.31643","DOIUrl":null,"url":null,"abstract":"Diagnosis of brain tumors is one of the most severe medical problems that affect thousands of people each year in the United States. Manual classification of cancerous tumors through examination of MRI images is a difficult task even for trained professionals. It is an error-prone procedure that is dependent on the experience of the radiologist. Brain tumors, in particular, have a high level of complexity. Therefore, computer-aided diagnosis systems designed to assist with this task are of specific interest for physicians. Accurate detection and classification of brain tumors via magnetic resonance imaging (MRI) examination is a famous approach to analyze MRI images. This paper proposes a method to classify different brain tumors using a Convolutional Neural Network (CNN). We explore the performance of several CNN architectures and examine if decreasing the input image resolution affects the model's accuracy. The dataset used to train the model has initially been 3064 MRI scans. We augmented the data set to 8544 MRI scans to balance the available classes of images. The results show that the design of a suitable CNN architecture can significantly better diagnose medical images. The developed model classification performance was up to 97\\% accuracy.","PeriodicalId":40905,"journal":{"name":"EMITTER-International Journal of Engineering Technology","volume":"20 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Diagnosis of Medical Images Using Cloud-Deep Learning System\",\"authors\":\"M. Jacobs, A. Arfan, A. Sheta\",\"doi\":\"10.14419/ijet.v10i2.31643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Diagnosis of brain tumors is one of the most severe medical problems that affect thousands of people each year in the United States. Manual classification of cancerous tumors through examination of MRI images is a difficult task even for trained professionals. It is an error-prone procedure that is dependent on the experience of the radiologist. Brain tumors, in particular, have a high level of complexity. Therefore, computer-aided diagnosis systems designed to assist with this task are of specific interest for physicians. Accurate detection and classification of brain tumors via magnetic resonance imaging (MRI) examination is a famous approach to analyze MRI images. This paper proposes a method to classify different brain tumors using a Convolutional Neural Network (CNN). We explore the performance of several CNN architectures and examine if decreasing the input image resolution affects the model's accuracy. The dataset used to train the model has initially been 3064 MRI scans. We augmented the data set to 8544 MRI scans to balance the available classes of images. The results show that the design of a suitable CNN architecture can significantly better diagnose medical images. The developed model classification performance was up to 97\\\\% accuracy.\",\"PeriodicalId\":40905,\"journal\":{\"name\":\"EMITTER-International Journal of Engineering Technology\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.4000,\"publicationDate\":\"2021-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EMITTER-International Journal of Engineering Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14419/ijet.v10i2.31643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EMITTER-International Journal of Engineering Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14419/ijet.v10i2.31643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Diagnosis of Medical Images Using Cloud-Deep Learning System
Diagnosis of brain tumors is one of the most severe medical problems that affect thousands of people each year in the United States. Manual classification of cancerous tumors through examination of MRI images is a difficult task even for trained professionals. It is an error-prone procedure that is dependent on the experience of the radiologist. Brain tumors, in particular, have a high level of complexity. Therefore, computer-aided diagnosis systems designed to assist with this task are of specific interest for physicians. Accurate detection and classification of brain tumors via magnetic resonance imaging (MRI) examination is a famous approach to analyze MRI images. This paper proposes a method to classify different brain tumors using a Convolutional Neural Network (CNN). We explore the performance of several CNN architectures and examine if decreasing the input image resolution affects the model's accuracy. The dataset used to train the model has initially been 3064 MRI scans. We augmented the data set to 8544 MRI scans to balance the available classes of images. The results show that the design of a suitable CNN architecture can significantly better diagnose medical images. The developed model classification performance was up to 97\% accuracy.