任意簇大小的1均值和1中位数2聚类问题:复杂性和近似

Q3 Decision Sciences
A. Pyatkin
{"title":"任意簇大小的1均值和1中位数2聚类问题:复杂性和近似","authors":"A. Pyatkin","doi":"10.2298/yjor211018008p","DOIUrl":null,"url":null,"abstract":"We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.","PeriodicalId":52438,"journal":{"name":"Yugoslav Journal of Operations Research","volume":"46 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"1-mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation\",\"authors\":\"A. Pyatkin\",\"doi\":\"10.2298/yjor211018008p\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.\",\"PeriodicalId\":52438,\"journal\":{\"name\":\"Yugoslav Journal of Operations Research\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Yugoslav Journal of Operations Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/yjor211018008p\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Decision Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Yugoslav Journal of Operations Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/yjor211018008p","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Decision Sciences","Score":null,"Total":0}
引用次数: 1

摘要

我们考虑下面的2聚类问题。给定欧几里德空间中的N个点,将其划分为两个子集(聚类),使聚类元素与其中心之间的距离平方和最小。第一个聚类的中心与其质心(均值)重合,而第二个聚类的中心应从初始点(中间点)的集合中选择。众所周知,如果将集群的基数作为输入的一部分给出,则该问题是np困难的。在本文中,我们证明了在任意簇大小的情况下问题仍然是np困难的,并提出了一个2逼近多项式时间算法来解决这个问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
1-mean and 1-medoid 2-clustering problem with arbitrary cluster sizes: Complexity and approximation
We consider the following 2-clustering problem. Given N points in Euclidean space, partition it into two subsets (clusters) so that the sum of squared distances between the elements of the clusters and their centers would be minimum. The center of the first cluster coincides with its centroid (mean) while the center of the second cluster should be chosen from the set of the initial points (medoid). It is known that this problem is NP-hard if the cardinalities of the clusters are given as a part of the input. In this paper we prove that the problem remains NP-hard in the case of arbitrary clusters sizes and suggest a 2-approximation polynomial-time algorithm for this problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Yugoslav Journal of Operations Research
Yugoslav Journal of Operations Research Decision Sciences-Management Science and Operations Research
CiteScore
2.50
自引率
0.00%
发文量
14
审稿时长
24 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信