具有弹性欧拉判罚的平均距离问题

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Q. Du, Xinran Lu, Chongzeng Wang
{"title":"具有弹性欧拉判罚的平均距离问题","authors":"Q. Du, Xinran Lu, Chongzeng Wang","doi":"10.4171/ifb/470","DOIUrl":null,"url":null,"abstract":"We consider the minimization of an average distance functional defined on a two-dimensional domain Ω with an Euler elastica penalization associated with ∂Ω, the boundary of Ω. The average distance is given by ∫ Ω dist(x, ∂Ω) dx where p ≥ 1 is a given parameter, and dist(x, ∂Ω) is the Hausdorff distance between {x} and ∂Ω. The penalty term is a multiple of the Euler elastica (i.e., the Helfrich bending energy or the Willmore energy) of the boundary curve ∂Ω, which is proportional to the integrated squared curvature defined on ∂Ω, as given by λ ∫ ∂Ω κ∂Ω dH x∂Ω, where κ∂Ω denotes the (signed) curvature of ∂Ω and λ > 0 denotes a penalty constant. The domain Ω is allowed to vary among compact, convex sets of R2 with Hausdorff dimension equal to 2. Under no a priori assumptions on the regularity of the boundary ∂Ω, we prove the existence of minimizers of Ep,λ. Moreover, we establish the C1,1-regularity of its minimizers. An original construction of a suitable family of competitors plays a decisive role in proving the regularity.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2022-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The average-distance problem with an Euler elastica penalization\",\"authors\":\"Q. Du, Xinran Lu, Chongzeng Wang\",\"doi\":\"10.4171/ifb/470\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the minimization of an average distance functional defined on a two-dimensional domain Ω with an Euler elastica penalization associated with ∂Ω, the boundary of Ω. The average distance is given by ∫ Ω dist(x, ∂Ω) dx where p ≥ 1 is a given parameter, and dist(x, ∂Ω) is the Hausdorff distance between {x} and ∂Ω. The penalty term is a multiple of the Euler elastica (i.e., the Helfrich bending energy or the Willmore energy) of the boundary curve ∂Ω, which is proportional to the integrated squared curvature defined on ∂Ω, as given by λ ∫ ∂Ω κ∂Ω dH x∂Ω, where κ∂Ω denotes the (signed) curvature of ∂Ω and λ > 0 denotes a penalty constant. The domain Ω is allowed to vary among compact, convex sets of R2 with Hausdorff dimension equal to 2. Under no a priori assumptions on the regularity of the boundary ∂Ω, we prove the existence of minimizers of Ep,λ. Moreover, we establish the C1,1-regularity of its minimizers. An original construction of a suitable family of competitors plays a decisive role in proving the regularity.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2022-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/ifb/470\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/ifb/470","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑在二维域Ω上定义的平均距离泛函的最小化,并考虑与Ω的边界∂Ω相关的欧拉弹性惩罚。平均距离由∫Ω dist(x,∂Ω) dx给出,其中p≥1是给定参数,而dist(x,∂Ω)是{x}和∂Ω之间的Hausdorff距离。惩罚项是边界曲线∂Ω的欧拉弹性(即Helfrich弯曲能量或Willmore能量)的乘积,它与∂Ω上定义的积分平方曲率成正比,由λ∫∂Ω κ∂Ω dH x∂Ω给出,其中κ∂Ω表示∂Ω的(有符号的)曲率,λ >表示惩罚常数。域Ω允许在Hausdorff维数等于2的R2的紧致凸集之间变化。在对边界∂Ω的正则性没有先验假设的情况下,我们证明了Ep,λ的极小值的存在性。此外,我们还建立了其最小值的C1,1正则性。一个合适的竞争者家族的原始构造在证明规律性方面起着决定性的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The average-distance problem with an Euler elastica penalization
We consider the minimization of an average distance functional defined on a two-dimensional domain Ω with an Euler elastica penalization associated with ∂Ω, the boundary of Ω. The average distance is given by ∫ Ω dist(x, ∂Ω) dx where p ≥ 1 is a given parameter, and dist(x, ∂Ω) is the Hausdorff distance between {x} and ∂Ω. The penalty term is a multiple of the Euler elastica (i.e., the Helfrich bending energy or the Willmore energy) of the boundary curve ∂Ω, which is proportional to the integrated squared curvature defined on ∂Ω, as given by λ ∫ ∂Ω κ∂Ω dH x∂Ω, where κ∂Ω denotes the (signed) curvature of ∂Ω and λ > 0 denotes a penalty constant. The domain Ω is allowed to vary among compact, convex sets of R2 with Hausdorff dimension equal to 2. Under no a priori assumptions on the regularity of the boundary ∂Ω, we prove the existence of minimizers of Ep,λ. Moreover, we establish the C1,1-regularity of its minimizers. An original construction of a suitable family of competitors plays a decisive role in proving the regularity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信