基于噪声场相干性的麦克风阵列后滤波

I. McCowan, H. Bourlard
{"title":"基于噪声场相干性的麦克风阵列后滤波","authors":"I. McCowan, H. Bourlard","doi":"10.1109/TSA.2003.818212","DOIUrl":null,"url":null,"abstract":"This paper introduces a novel technique for estimating the signal power spectral density to be used in the transfer function of a microphone array post-filter. The technique is a generalization of the existing Zelinski post-filter, which uses the auto- and cross-spectral densities of the array inputs to estimate the signal and noise spectral densities. The Zelinski technique, however, assumes zero cross-correlation between the noise on different sensors. This assumption is inaccurate, particularly at low frequencies and for arrays with closely spaced sensors, and thus the corresponding post-filter is suboptimal in realistic noise conditions. In this paper, a more general expression of the post-filter estimation is developed based on an assumed knowledge of the complex coherence of the noise field. This general expression can be used to construct a more appropriate post-filter in a variety of different noise fields. In experiments using real noise recordings from a computer office, the modified post-filter results in significant improvement in terms of objective speech quality measures and speech recognition performance using a diffuse noise model.","PeriodicalId":13155,"journal":{"name":"IEEE Trans. Speech Audio Process.","volume":"48 1","pages":"709-716"},"PeriodicalIF":0.0000,"publicationDate":"2003-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"315","resultStr":"{\"title\":\"Microphone array post-filter based on noise field coherence\",\"authors\":\"I. McCowan, H. Bourlard\",\"doi\":\"10.1109/TSA.2003.818212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a novel technique for estimating the signal power spectral density to be used in the transfer function of a microphone array post-filter. The technique is a generalization of the existing Zelinski post-filter, which uses the auto- and cross-spectral densities of the array inputs to estimate the signal and noise spectral densities. The Zelinski technique, however, assumes zero cross-correlation between the noise on different sensors. This assumption is inaccurate, particularly at low frequencies and for arrays with closely spaced sensors, and thus the corresponding post-filter is suboptimal in realistic noise conditions. In this paper, a more general expression of the post-filter estimation is developed based on an assumed knowledge of the complex coherence of the noise field. This general expression can be used to construct a more appropriate post-filter in a variety of different noise fields. In experiments using real noise recordings from a computer office, the modified post-filter results in significant improvement in terms of objective speech quality measures and speech recognition performance using a diffuse noise model.\",\"PeriodicalId\":13155,\"journal\":{\"name\":\"IEEE Trans. Speech Audio Process.\",\"volume\":\"48 1\",\"pages\":\"709-716\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"315\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Speech Audio Process.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSA.2003.818212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Speech Audio Process.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSA.2003.818212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 315

摘要

本文介绍了一种用于传声器阵列后滤波器传递函数的信号功率谱密度估计新技术。该技术是现有Zelinski后滤波的推广,利用阵列输入的自谱密度和交叉谱密度来估计信号和噪声的谱密度。然而,Zelinski技术假设不同传感器上的噪声之间的相互关系为零。这种假设是不准确的,特别是在低频和具有紧密间隔传感器的阵列时,因此相应的后滤波器在实际噪声条件下是次优的。在本文中,基于假设噪声场的复相干性的知识,开发了一个更一般的滤波后估计表达式。这个通用表达式可用于在各种不同的噪声场中构造更合适的后滤波器。在使用来自计算机办公室的真实噪声记录的实验中,改进后的后滤波器在客观语音质量度量和使用弥漫性噪声模型的语音识别性能方面取得了显着改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Microphone array post-filter based on noise field coherence
This paper introduces a novel technique for estimating the signal power spectral density to be used in the transfer function of a microphone array post-filter. The technique is a generalization of the existing Zelinski post-filter, which uses the auto- and cross-spectral densities of the array inputs to estimate the signal and noise spectral densities. The Zelinski technique, however, assumes zero cross-correlation between the noise on different sensors. This assumption is inaccurate, particularly at low frequencies and for arrays with closely spaced sensors, and thus the corresponding post-filter is suboptimal in realistic noise conditions. In this paper, a more general expression of the post-filter estimation is developed based on an assumed knowledge of the complex coherence of the noise field. This general expression can be used to construct a more appropriate post-filter in a variety of different noise fields. In experiments using real noise recordings from a computer office, the modified post-filter results in significant improvement in terms of objective speech quality measures and speech recognition performance using a diffuse noise model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信