高阶Korteweg-de Vries方程组的存在性

IF 1 4区 数学
Min Liu
{"title":"高阶Korteweg-de Vries方程组的存在性","authors":"Min Liu","doi":"10.4236/AM.2021.124021","DOIUrl":null,"url":null,"abstract":"Consider the following system of coupled Korteweg-de Vries equations, where u, v ⊆ W2,2, 2≤N≤7 and λi,β > 0, β denotes a real coupling parameter. Firstly, we prove the existence of the solutions of a coupled system of Korteweg-de Vries equations using variation approach and minimization techniques on Nehari manifold. Then, we show the multiplicity of the equations by a bifurcation theory which is rare for studying higher order equations.","PeriodicalId":55568,"journal":{"name":"Applied Mathematics-A Journal of Chinese Universities Series B","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence for a Higher Order Coupled System of Korteweg-de Vries Equations\",\"authors\":\"Min Liu\",\"doi\":\"10.4236/AM.2021.124021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Consider the following system of coupled Korteweg-de Vries equations, where u, v ⊆ W2,2, 2≤N≤7 and λi,β > 0, β denotes a real coupling parameter. Firstly, we prove the existence of the solutions of a coupled system of Korteweg-de Vries equations using variation approach and minimization techniques on Nehari manifold. Then, we show the multiplicity of the equations by a bifurcation theory which is rare for studying higher order equations.\",\"PeriodicalId\":55568,\"journal\":{\"name\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2021-04-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics-A Journal of Chinese Universities Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4236/AM.2021.124021\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics-A Journal of Chinese Universities Series B","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4236/AM.2021.124021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑如下Korteweg-de Vries耦合方程组,其中u, v≥N≤7,λi,β > 0, β为实耦合参数。首先,利用Nehari流形上的变分法和最小化技术证明了一类Korteweg-de Vries方程耦合系统解的存在性。然后,我们利用分叉理论证明了方程的多重性,这在研究高阶方程时是很少见的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence for a Higher Order Coupled System of Korteweg-de Vries Equations
Consider the following system of coupled Korteweg-de Vries equations, where u, v ⊆ W2,2, 2≤N≤7 and λi,β > 0, β denotes a real coupling parameter. Firstly, we prove the existence of the solutions of a coupled system of Korteweg-de Vries equations using variation approach and minimization techniques on Nehari manifold. Then, we show the multiplicity of the equations by a bifurcation theory which is rare for studying higher order equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
10.00%
发文量
33
期刊介绍: Applied Mathematics promotes the integration of mathematics with other scientific disciplines, expanding its fields of study and promoting the development of relevant interdisciplinary subjects. The journal mainly publishes original research papers that apply mathematical concepts, theories and methods to other subjects such as physics, chemistry, biology, information science, energy, environmental science, economics, and finance. In addition, it also reports the latest developments and trends in which mathematics interacts with other disciplines. Readers include professors and students, professionals in applied mathematics, and engineers at research institutes and in industry. Applied Mathematics - A Journal of Chinese Universities has been an English-language quarterly since 1993. The English edition, abbreviated as Series B, has different contents than this Chinese edition, Series A.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信