{"title":"具有一定条件的七价对称图","authors":"Jia-Li Du, Yan-Quan Feng, Yu-Qin Liu","doi":"10.1142/S1005386721000195","DOIUrl":null,"url":null,"abstract":"A graph [Formula: see text] is said to be symmetric if its automorphism group [Formula: see text] acts transitively on the arc set of [Formula: see text]. We show that if [Formula: see text] is a finite connected heptavalent symmetric graph with solvable stabilizer admitting a vertex-transitive non-abelian simple group [Formula: see text] of automorphisms, then either [Formula: see text] is normal in [Formula: see text], or [Formula: see text] contains a non-abelian simple normal subgroup [Formula: see text] such that [Formula: see text] and [Formula: see text] is explicitly given as one of 11 possible exceptional pairs of non-abelian simple groups. If [Formula: see text] is arc-transitive, then [Formula: see text] is always normal in [Formula: see text], and if [Formula: see text] is regular on the vertices of [Formula: see text], then the number of possible exceptional pairs [Formula: see text] is reduced to 5.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heptavalent Symmetric Graphs with Certain Conditions\",\"authors\":\"Jia-Li Du, Yan-Quan Feng, Yu-Qin Liu\",\"doi\":\"10.1142/S1005386721000195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A graph [Formula: see text] is said to be symmetric if its automorphism group [Formula: see text] acts transitively on the arc set of [Formula: see text]. We show that if [Formula: see text] is a finite connected heptavalent symmetric graph with solvable stabilizer admitting a vertex-transitive non-abelian simple group [Formula: see text] of automorphisms, then either [Formula: see text] is normal in [Formula: see text], or [Formula: see text] contains a non-abelian simple normal subgroup [Formula: see text] such that [Formula: see text] and [Formula: see text] is explicitly given as one of 11 possible exceptional pairs of non-abelian simple groups. If [Formula: see text] is arc-transitive, then [Formula: see text] is always normal in [Formula: see text], and if [Formula: see text] is regular on the vertices of [Formula: see text], then the number of possible exceptional pairs [Formula: see text] is reduced to 5.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2021-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/S1005386721000195\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1005386721000195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
如果图[公式:见文]的自同构群[公式:见文]传递作用于[公式:见文]的弧集,则图[公式:见文]是对称的。我们证明了如果[公式:见文]是一个具有可解稳定子的有限连通七价对称图,它允许自同构的一个顶点传递的非阿贝尔单群[公式:见文],那么[公式:见文]在[公式:见文]中是正规的,或者[公式:见文]包含一个非阿贝尔简单正规子群[公式:见文]使得[公式:见文]和[公式:见文]被明确地作为11个可能的非阿贝尔简单群例外对之一给出。如果[Formula: see text]是圆弧传递的,那么[Formula: see text]在[Formula: see text]中总是正常的,如果[Formula: see text]在[Formula: see text]的顶点上是规则的,那么可能的异常对[Formula: see text]的数量减少到5。
Heptavalent Symmetric Graphs with Certain Conditions
A graph [Formula: see text] is said to be symmetric if its automorphism group [Formula: see text] acts transitively on the arc set of [Formula: see text]. We show that if [Formula: see text] is a finite connected heptavalent symmetric graph with solvable stabilizer admitting a vertex-transitive non-abelian simple group [Formula: see text] of automorphisms, then either [Formula: see text] is normal in [Formula: see text], or [Formula: see text] contains a non-abelian simple normal subgroup [Formula: see text] such that [Formula: see text] and [Formula: see text] is explicitly given as one of 11 possible exceptional pairs of non-abelian simple groups. If [Formula: see text] is arc-transitive, then [Formula: see text] is always normal in [Formula: see text], and if [Formula: see text] is regular on the vertices of [Formula: see text], then the number of possible exceptional pairs [Formula: see text] is reduced to 5.