一类三维对称分段仿射系统的同斜分岔

Ruimin Liu, Minghao Liu, Tiantian Wu
{"title":"一类三维对称分段仿射系统的同斜分岔","authors":"Ruimin Liu, Minghao Liu, Tiantian Wu","doi":"10.1142/s0218127423501110","DOIUrl":null,"url":null,"abstract":"Many physical and engineering systems have certain symmetric properties. Homoclinic orbits play an important role in studying the global dynamics of dynamical systems. This paper focuses on the existence and bifurcations of homoclinic orbits to a saddle in a class of three-dimensional one-parameter three-zone symmetric piecewise affine systems. Based on the analysis of the Poincaré maps, the systems have two types of limit cycles and do not have chaotic invariant sets near the homoclinic orbits. In addition, the paper provides a constant [Formula: see text] to study the homoclinic bifurcations to limit cycles for the case [Formula: see text]. Two examples with simulations of the homoclinic orbits and the limit cycles are given to illustrate the effectiveness of the results.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"46 1","pages":"2350111:1-2350111:15"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Homoclinic Bifurcations in a Class of Three-Dimensional Symmetric Piecewise Affine Systems\",\"authors\":\"Ruimin Liu, Minghao Liu, Tiantian Wu\",\"doi\":\"10.1142/s0218127423501110\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many physical and engineering systems have certain symmetric properties. Homoclinic orbits play an important role in studying the global dynamics of dynamical systems. This paper focuses on the existence and bifurcations of homoclinic orbits to a saddle in a class of three-dimensional one-parameter three-zone symmetric piecewise affine systems. Based on the analysis of the Poincaré maps, the systems have two types of limit cycles and do not have chaotic invariant sets near the homoclinic orbits. In addition, the paper provides a constant [Formula: see text] to study the homoclinic bifurcations to limit cycles for the case [Formula: see text]. Two examples with simulations of the homoclinic orbits and the limit cycles are given to illustrate the effectiveness of the results.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"46 1\",\"pages\":\"2350111:1-2350111:15\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127423501110\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127423501110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多物理和工程系统具有一定的对称性质。同斜轨道在研究动力系统的整体动力学中起着重要的作用。研究了一类三维单参数三区对称分段仿射系统鞍形同斜轨道的存在性和分岔性。通过对庞卡罗映射的分析,得到系统有两类极限环,且在同斜轨道附近不存在混沌不变集。此外,本文还提供了一个常数[公式:见文]来研究这种情况下极限环的同斜分岔[公式:见文]。最后给出了两个同斜轨道和极限环的模拟实例,说明了所得结果的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Homoclinic Bifurcations in a Class of Three-Dimensional Symmetric Piecewise Affine Systems
Many physical and engineering systems have certain symmetric properties. Homoclinic orbits play an important role in studying the global dynamics of dynamical systems. This paper focuses on the existence and bifurcations of homoclinic orbits to a saddle in a class of three-dimensional one-parameter three-zone symmetric piecewise affine systems. Based on the analysis of the Poincaré maps, the systems have two types of limit cycles and do not have chaotic invariant sets near the homoclinic orbits. In addition, the paper provides a constant [Formula: see text] to study the homoclinic bifurcations to limit cycles for the case [Formula: see text]. Two examples with simulations of the homoclinic orbits and the limit cycles are given to illustrate the effectiveness of the results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信