Ming-Pin Chen, Lai-Fu Chen, Meng-Fan Chang, Shu-Meng Yang, Yao-Jen Kuo, Jui-Jen Wu, M. Ho, H. Su, Yuan-Hua Chu, Wen-Chin Wu, Tzu-Yi Yang, H. Yamauchi
{"title":"一种260mV l型7T SRAM,具有位线(BL)摆幅扩展方案,基于升压BL、非对称vth读端口和偏移单元VDD偏置技术","authors":"Ming-Pin Chen, Lai-Fu Chen, Meng-Fan Chang, Shu-Meng Yang, Yao-Jen Kuo, Jui-Jen Wu, M. Ho, H. Su, Yuan-Hua Chu, Wen-Chin Wu, Tzu-Yi Yang, H. Yamauchi","doi":"10.1109/VLSIC.2012.6243815","DOIUrl":null,"url":null,"abstract":"This work proposes bit-line (BL) swing expansion schemes (BL-EXPD), which minimize the product (A*VDDmin) of SRAM cell area (A) and the minimum operation voltage (VDDmin) to the best of our knowledge. The key-enablers to minimize A*VDDmin are: L-shaped 7T cell (L7T) and BL-EXPD. The L7T features: (1) an area efficient cell layout, (2) a read-disturb free decoupled 1T read port (RP), and (3) a half-select disturb free write back scheme[1]. The BL-EXPD enables a 9× larger read-BL (RBL) swing at the 6σ point than that in our previously proposed Z8T[2] and allows single BL sensing to reduce cell area. A fabricated 65nm 256-row BL 32Kb L7T SRAM achieved a 260mV VDDmin. As a result, its A*VDDmin is ~50% lower than for Z8T and conventional 8T SRAM cells [3,4].","PeriodicalId":6347,"journal":{"name":"2012 Symposium on VLSI Circuits (VLSIC)","volume":"1 1","pages":"112-113"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"A 260mV L-shaped 7T SRAM with bit-line (BL) Swing expansion schemes based on boosted BL, asymmetric-VTH read-port, and offset cell VDD biasing techniques\",\"authors\":\"Ming-Pin Chen, Lai-Fu Chen, Meng-Fan Chang, Shu-Meng Yang, Yao-Jen Kuo, Jui-Jen Wu, M. Ho, H. Su, Yuan-Hua Chu, Wen-Chin Wu, Tzu-Yi Yang, H. Yamauchi\",\"doi\":\"10.1109/VLSIC.2012.6243815\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work proposes bit-line (BL) swing expansion schemes (BL-EXPD), which minimize the product (A*VDDmin) of SRAM cell area (A) and the minimum operation voltage (VDDmin) to the best of our knowledge. The key-enablers to minimize A*VDDmin are: L-shaped 7T cell (L7T) and BL-EXPD. The L7T features: (1) an area efficient cell layout, (2) a read-disturb free decoupled 1T read port (RP), and (3) a half-select disturb free write back scheme[1]. The BL-EXPD enables a 9× larger read-BL (RBL) swing at the 6σ point than that in our previously proposed Z8T[2] and allows single BL sensing to reduce cell area. A fabricated 65nm 256-row BL 32Kb L7T SRAM achieved a 260mV VDDmin. As a result, its A*VDDmin is ~50% lower than for Z8T and conventional 8T SRAM cells [3,4].\",\"PeriodicalId\":6347,\"journal\":{\"name\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"volume\":\"1 1\",\"pages\":\"112-113\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 Symposium on VLSI Circuits (VLSIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2012.6243815\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Symposium on VLSI Circuits (VLSIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2012.6243815","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 260mV L-shaped 7T SRAM with bit-line (BL) Swing expansion schemes based on boosted BL, asymmetric-VTH read-port, and offset cell VDD biasing techniques
This work proposes bit-line (BL) swing expansion schemes (BL-EXPD), which minimize the product (A*VDDmin) of SRAM cell area (A) and the minimum operation voltage (VDDmin) to the best of our knowledge. The key-enablers to minimize A*VDDmin are: L-shaped 7T cell (L7T) and BL-EXPD. The L7T features: (1) an area efficient cell layout, (2) a read-disturb free decoupled 1T read port (RP), and (3) a half-select disturb free write back scheme[1]. The BL-EXPD enables a 9× larger read-BL (RBL) swing at the 6σ point than that in our previously proposed Z8T[2] and allows single BL sensing to reduce cell area. A fabricated 65nm 256-row BL 32Kb L7T SRAM achieved a 260mV VDDmin. As a result, its A*VDDmin is ~50% lower than for Z8T and conventional 8T SRAM cells [3,4].