涉及Riemann-Liouville导数的分数阶非线性微分方程系统的近似可控性

IF 2.2 Q1 MATHEMATICS, APPLIED
Lavina Sahijwani, N. Sukavanam
{"title":"涉及Riemann-Liouville导数的分数阶非线性微分方程系统的近似可控性","authors":"Lavina Sahijwani, N. Sukavanam","doi":"10.11121/ijocta.2023.1178","DOIUrl":null,"url":null,"abstract":"The article objectifies the approximate controllability of fractional nonlinear differential equations having Riemann-Liouville derivatives. First, the existence of solutions is deduced through fixed point approach and then approximate controllability is proved using Cauchy convergence through iterative and approximate techniques. The theory of semigroup together with probability density function has been utilized to reach the desired conclusions.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"15 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Approximate controllability for systems of fractional nonlinear differential equations involving Riemann-Liouville derivatives\",\"authors\":\"Lavina Sahijwani, N. Sukavanam\",\"doi\":\"10.11121/ijocta.2023.1178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The article objectifies the approximate controllability of fractional nonlinear differential equations having Riemann-Liouville derivatives. First, the existence of solutions is deduced through fixed point approach and then approximate controllability is proved using Cauchy convergence through iterative and approximate techniques. The theory of semigroup together with probability density function has been utilized to reach the desired conclusions.\",\"PeriodicalId\":37369,\"journal\":{\"name\":\"International Journal of Optimization and Control: Theories and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Optimization and Control: Theories and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11121/ijocta.2023.1178\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1

摘要

给出了具有Riemann-Liouville导数的分数阶非线性微分方程的近似可控性。首先通过不动点法推导出解的存在性,然后通过迭代和近似技术利用柯西收敛证明了近似可控性。利用半群理论和概率密度函数得到了预期的结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Approximate controllability for systems of fractional nonlinear differential equations involving Riemann-Liouville derivatives
The article objectifies the approximate controllability of fractional nonlinear differential equations having Riemann-Liouville derivatives. First, the existence of solutions is deduced through fixed point approach and then approximate controllability is proved using Cauchy convergence through iterative and approximate techniques. The theory of semigroup together with probability density function has been utilized to reach the desired conclusions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信