M. Proctor, M. Blanco de Paz, D. Bercioux, Aitzol Garc'ia-Etxarri, P. Arroyo Huidobro
{"title":"等离子体Kagome晶格的高阶拓扑","authors":"M. Proctor, M. Blanco de Paz, D. Bercioux, Aitzol Garc'ia-Etxarri, P. Arroyo Huidobro","doi":"10.1063/5.0040955","DOIUrl":null,"url":null,"abstract":"We study the topological properties of a kagome plasmonic metasurface, modelled with a coupled dipole method which naturally includes retarded long range interactions. We demonstrate the system supports an obstructed atomic limit phase through the calculation of Wilson loops. Then we characterise the hierarchy of topological boundary modes hosted by the subwavelength array of plasmonic nanoparticles: both one-dimensional edge modes as well as zero-dimensional corner modes. We determine the properties of these modes which robustly confine light at subwavelength scales, calculate the local density of photonic states at edge and corner modes frequencies, and demonstrate the selective excitation of delocalised corner modes in a topological cavity, through non-zero orbital angular momentum beam excitation.","PeriodicalId":8465,"journal":{"name":"arXiv: Mesoscale and Nanoscale Physics","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Higher-order topology in plasmonic Kagome lattices\",\"authors\":\"M. Proctor, M. Blanco de Paz, D. Bercioux, Aitzol Garc'ia-Etxarri, P. Arroyo Huidobro\",\"doi\":\"10.1063/5.0040955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the topological properties of a kagome plasmonic metasurface, modelled with a coupled dipole method which naturally includes retarded long range interactions. We demonstrate the system supports an obstructed atomic limit phase through the calculation of Wilson loops. Then we characterise the hierarchy of topological boundary modes hosted by the subwavelength array of plasmonic nanoparticles: both one-dimensional edge modes as well as zero-dimensional corner modes. We determine the properties of these modes which robustly confine light at subwavelength scales, calculate the local density of photonic states at edge and corner modes frequencies, and demonstrate the selective excitation of delocalised corner modes in a topological cavity, through non-zero orbital angular momentum beam excitation.\",\"PeriodicalId\":8465,\"journal\":{\"name\":\"arXiv: Mesoscale and Nanoscale Physics\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv: Mesoscale and Nanoscale Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0040955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Mesoscale and Nanoscale Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0040955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Higher-order topology in plasmonic Kagome lattices
We study the topological properties of a kagome plasmonic metasurface, modelled with a coupled dipole method which naturally includes retarded long range interactions. We demonstrate the system supports an obstructed atomic limit phase through the calculation of Wilson loops. Then we characterise the hierarchy of topological boundary modes hosted by the subwavelength array of plasmonic nanoparticles: both one-dimensional edge modes as well as zero-dimensional corner modes. We determine the properties of these modes which robustly confine light at subwavelength scales, calculate the local density of photonic states at edge and corner modes frequencies, and demonstrate the selective excitation of delocalised corner modes in a topological cavity, through non-zero orbital angular momentum beam excitation.