MIC:基于生成对抗网络的多视图图像分类器缺失数据输入

G. Aversano, M. Jarraya, Maher Marwani, I. Lahouli, S. Skhiri
{"title":"MIC:基于生成对抗网络的多视图图像分类器缺失数据输入","authors":"G. Aversano, M. Jarraya, Maher Marwani, I. Lahouli, S. Skhiri","doi":"10.1109/SSD52085.2021.9429478","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a framework for image classification tasks, named MIC, that takes as input multi-view images, such as RGB-T images for surveillance purposes. We combine auto-encoder and generative adversarial network architectures to ensure the multi-view embedding in a common latent space. Then, the resulting features are fed to the classification stage. The proposed framework is able to, all at once, train the multi-view embedding model to find a shared latent representation for the different views, perform data imputation (generate the missing views) and ensure the classification task by predicting the labels. Experiments on the MNIST dataset with a panoply of classifiers and several missingness ratios show the effectiveness of our solution.","PeriodicalId":6799,"journal":{"name":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","volume":"10 1","pages":"283-288"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation\",\"authors\":\"G. Aversano, M. Jarraya, Maher Marwani, I. Lahouli, S. Skhiri\",\"doi\":\"10.1109/SSD52085.2021.9429478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a framework for image classification tasks, named MIC, that takes as input multi-view images, such as RGB-T images for surveillance purposes. We combine auto-encoder and generative adversarial network architectures to ensure the multi-view embedding in a common latent space. Then, the resulting features are fed to the classification stage. The proposed framework is able to, all at once, train the multi-view embedding model to find a shared latent representation for the different views, perform data imputation (generate the missing views) and ensure the classification task by predicting the labels. Experiments on the MNIST dataset with a panoply of classifiers and several missingness ratios show the effectiveness of our solution.\",\"PeriodicalId\":6799,\"journal\":{\"name\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"volume\":\"10 1\",\"pages\":\"283-288\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD52085.2021.9429478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 18th International Multi-Conference on Systems, Signals & Devices (SSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD52085.2021.9429478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们提出了一个图像分类任务的框架,称为MIC,它以多视图图像作为输入,例如用于监视目的的RGB-T图像。我们将自编码器和生成对抗网络结构相结合,以确保在公共潜在空间中嵌入多视图。然后,将得到的特征输入到分类阶段。该框架能够同时训练多视图嵌入模型,为不同视图寻找共享的潜在表示,执行数据输入(生成缺失视图),并通过预测标签来确保分类任务。在MNIST数据集上的一系列分类器和几个缺失率的实验表明了我们的解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MIC: Multi-view Image Classifier using Generative Adversarial Networks for Missing Data Imputation
In this paper, we propose a framework for image classification tasks, named MIC, that takes as input multi-view images, such as RGB-T images for surveillance purposes. We combine auto-encoder and generative adversarial network architectures to ensure the multi-view embedding in a common latent space. Then, the resulting features are fed to the classification stage. The proposed framework is able to, all at once, train the multi-view embedding model to find a shared latent representation for the different views, perform data imputation (generate the missing views) and ensure the classification task by predicting the labels. Experiments on the MNIST dataset with a panoply of classifiers and several missingness ratios show the effectiveness of our solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信