基于中值滤波和聚类的视神经头自动分割

Anindita Septiarini, H. Hamdani, Emy Setyaningsih, Edwanda Arisandy, S. Suyanto, E. Winarno
{"title":"基于中值滤波和聚类的视神经头自动分割","authors":"Anindita Septiarini, H. Hamdani, Emy Setyaningsih, Edwanda Arisandy, S. Suyanto, E. Winarno","doi":"10.1109/ICTS52701.2021.9608854","DOIUrl":null,"url":null,"abstract":"The optic nerve head (ONH) is a sphere area with light-colored on the fundus image. It needs to be observed by an ophthalmologist to detect glaucoma. Glaucoma is an eye disease that may cause permanent blindness. It can be detected based on the cup-to-disk ratio (CDR) value. This value is generated by calculating the diameter length of the ONH. In order to perform these calculations, it is necessary to segment the ONH area. This study aims to develop an ONH area segmentation method that consists of four main processes: detection of the region of interest (ROI), pre-processing, segmentation and post-processing. ROI detection is implemented in the green channel using the OTSU method, followed by pre-processing using the median filtering, which aims to discard the blood vessel. Furthermore, K - Means is applied to the segmentation process, followed by post-processing using several morphological operations to remove the appearance noise. This method successfully achieves the F1score value of 0.941 with test data of 68 images.","PeriodicalId":6738,"journal":{"name":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","volume":"1 1","pages":"118-122"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Automatic Segmentation of Optic Nerve Head by Median Filtering and Clustering Approach\",\"authors\":\"Anindita Septiarini, H. Hamdani, Emy Setyaningsih, Edwanda Arisandy, S. Suyanto, E. Winarno\",\"doi\":\"10.1109/ICTS52701.2021.9608854\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The optic nerve head (ONH) is a sphere area with light-colored on the fundus image. It needs to be observed by an ophthalmologist to detect glaucoma. Glaucoma is an eye disease that may cause permanent blindness. It can be detected based on the cup-to-disk ratio (CDR) value. This value is generated by calculating the diameter length of the ONH. In order to perform these calculations, it is necessary to segment the ONH area. This study aims to develop an ONH area segmentation method that consists of four main processes: detection of the region of interest (ROI), pre-processing, segmentation and post-processing. ROI detection is implemented in the green channel using the OTSU method, followed by pre-processing using the median filtering, which aims to discard the blood vessel. Furthermore, K - Means is applied to the segmentation process, followed by post-processing using several morphological operations to remove the appearance noise. This method successfully achieves the F1score value of 0.941 with test data of 68 images.\",\"PeriodicalId\":6738,\"journal\":{\"name\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"volume\":\"1 1\",\"pages\":\"118-122\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Information & Communication Technology and System (ICTS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTS52701.2021.9608854\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Information & Communication Technology and System (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS52701.2021.9608854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

视神经头(ONH)是眼底图像上浅色的球形区域。需要眼科医生观察才能发现青光眼。青光眼是一种可能导致永久失明的眼部疾病。通过CDR (cup-to-disk ratio)值检测。该值是通过计算ONH的直径长度生成的。为了执行这些计算,有必要对ONH区域进行分割。本研究旨在开发一种ONH区域分割方法,该方法包括四个主要过程:感兴趣区域(ROI)检测、预处理、分割和后处理。使用OTSU方法在绿色通道中实现ROI检测,然后使用中值滤波进行预处理,目的是丢弃血管。此外,K - Means被应用到分割过程中,随后使用几个形态学操作进行后处理以去除外观噪声。该方法使用68张图像的测试数据,成功地获得了F1score值0.941。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automatic Segmentation of Optic Nerve Head by Median Filtering and Clustering Approach
The optic nerve head (ONH) is a sphere area with light-colored on the fundus image. It needs to be observed by an ophthalmologist to detect glaucoma. Glaucoma is an eye disease that may cause permanent blindness. It can be detected based on the cup-to-disk ratio (CDR) value. This value is generated by calculating the diameter length of the ONH. In order to perform these calculations, it is necessary to segment the ONH area. This study aims to develop an ONH area segmentation method that consists of four main processes: detection of the region of interest (ROI), pre-processing, segmentation and post-processing. ROI detection is implemented in the green channel using the OTSU method, followed by pre-processing using the median filtering, which aims to discard the blood vessel. Furthermore, K - Means is applied to the segmentation process, followed by post-processing using several morphological operations to remove the appearance noise. This method successfully achieves the F1score value of 0.941 with test data of 68 images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信