关于Star-Pr“uextension”的注释

Q3 Mathematics
Lokendra Paudel, S. Tchamna
{"title":"关于Star-Pr“uextension”的注释","authors":"Lokendra Paudel, S. Tchamna","doi":"10.5539/jmr.v15n2p66","DOIUrl":null,"url":null,"abstract":"Let ★ be a star operation on a ring extension R \\subseteq S . The ring extension R \\subseteq S is said to be a ★-Pr¨ufer if R[p] \\subseteq S is a Pr¨ufer extension for each ★-prime ideal p of R. We study properties of ★-Pr¨ufer extensions. In particular, we investigate the transfer of star-Pr¨ufer properties from the extension R \\subseteq S to the extension R[X] \\subseteq S [X] of polynomial rings, where X is an indeterminate over S .","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Star-Pr\\\"ufer Extensions\",\"authors\":\"Lokendra Paudel, S. Tchamna\",\"doi\":\"10.5539/jmr.v15n2p66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ★ be a star operation on a ring extension R \\\\subseteq S . The ring extension R \\\\subseteq S is said to be a ★-Pr¨ufer if R[p] \\\\subseteq S is a Pr¨ufer extension for each ★-prime ideal p of R. We study properties of ★-Pr¨ufer extensions. In particular, we investigate the transfer of star-Pr¨ufer properties from the extension R \\\\subseteq S to the extension R[X] \\\\subseteq S [X] of polynomial rings, where X is an indeterminate over S .\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n2p66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n2p66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

设★是环扩展R \子集S上的星形运算。如果R[p] \subseteq S是R的每一个★素数理想p的一个★-Pr - ufer扩展,则R \subseteq S是一个★-Pr - ufer扩展。我们研究了★-Pr - ufer扩展的性质。特别地,我们研究了多项式环的star-Pr´ufer性质从扩展R \subseteq S到扩展R[X] \subseteq S [X]的转移,其中X是S上的不定式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Note on Star-Pr"ufer Extensions
Let ★ be a star operation on a ring extension R \subseteq S . The ring extension R \subseteq S is said to be a ★-Pr¨ufer if R[p] \subseteq S is a Pr¨ufer extension for each ★-prime ideal p of R. We study properties of ★-Pr¨ufer extensions. In particular, we investigate the transfer of star-Pr¨ufer properties from the extension R \subseteq S to the extension R[X] \subseteq S [X] of polynomial rings, where X is an indeterminate over S .
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Mathematics in Operational Research
International Journal of Mathematics in Operational Research Decision Sciences-Decision Sciences (all)
CiteScore
2.10
自引率
0.00%
发文量
44
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信