{"title":"关于Star-Pr“uextension”的注释","authors":"Lokendra Paudel, S. Tchamna","doi":"10.5539/jmr.v15n2p66","DOIUrl":null,"url":null,"abstract":"Let ★ be a star operation on a ring extension R \\subseteq S . The ring extension R \\subseteq S is said to be a ★-Pr¨ufer if R[p] \\subseteq S is a Pr¨ufer extension for each ★-prime ideal p of R. We study properties of ★-Pr¨ufer extensions. In particular, we investigate the transfer of star-Pr¨ufer properties from the extension R \\subseteq S to the extension R[X] \\subseteq S [X] of polynomial rings, where X is an indeterminate over S .","PeriodicalId":38619,"journal":{"name":"International Journal of Mathematics in Operational Research","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Note on Star-Pr\\\"ufer Extensions\",\"authors\":\"Lokendra Paudel, S. Tchamna\",\"doi\":\"10.5539/jmr.v15n2p66\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let ★ be a star operation on a ring extension R \\\\subseteq S . The ring extension R \\\\subseteq S is said to be a ★-Pr¨ufer if R[p] \\\\subseteq S is a Pr¨ufer extension for each ★-prime ideal p of R. We study properties of ★-Pr¨ufer extensions. In particular, we investigate the transfer of star-Pr¨ufer properties from the extension R \\\\subseteq S to the extension R[X] \\\\subseteq S [X] of polynomial rings, where X is an indeterminate over S .\",\"PeriodicalId\":38619,\"journal\":{\"name\":\"International Journal of Mathematics in Operational Research\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mathematics in Operational Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5539/jmr.v15n2p66\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics in Operational Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5539/jmr.v15n2p66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
Let ★ be a star operation on a ring extension R \subseteq S . The ring extension R \subseteq S is said to be a ★-Pr¨ufer if R[p] \subseteq S is a Pr¨ufer extension for each ★-prime ideal p of R. We study properties of ★-Pr¨ufer extensions. In particular, we investigate the transfer of star-Pr¨ufer properties from the extension R \subseteq S to the extension R[X] \subseteq S [X] of polynomial rings, where X is an indeterminate over S .