用迭代滤波和数据选择改进僧伽罗语-英语NMT的反翻译

Koshiya Epaliyana, Surangika Ranathunga, Sanath Jayasena
{"title":"用迭代滤波和数据选择改进僧伽罗语-英语NMT的反翻译","authors":"Koshiya Epaliyana, Surangika Ranathunga, Sanath Jayasena","doi":"10.1109/MERCon52712.2021.9525800","DOIUrl":null,"url":null,"abstract":"Neural Machine Translation (NMT) requires a large amount of parallel data to achieve reasonable results. For low resource settings such as Sinhala-English where parallel data is scarce, NMT tends to give sub-optimal results. This is severe when the translation is domain-specific. One solution for the data scarcity problem is data augmentation. To augment the parallel data for low resource language pairs, commonly available large monolingual corpora can be used. A popular data augmentation technique is Back-Translation (BT). Over the years, there have been many techniques to improve Vanilla BT. Prominent ones are Iterative BT, Filtering, and Data selection. We employ these in Sinhala - English extremely low resource domain-specific translation in order to improve the performance of NMT. In particular, we move forward from previous research and show that by combining these different techniques, an even better result can be obtained. Our combined model provided a +3.0 BLEU score gain over the Vanilla NMT model and a +1.93 BLEU score gain over the Vanilla BT model for Sinhala → English translation. Furthermore, a +0.65 BLEU score gain over the Vanilla NMT model and a +2.22 BLEU score gain over the Vanilla BT model were observed for English → Sinhala translation.","PeriodicalId":6855,"journal":{"name":"2021 Moratuwa Engineering Research Conference (MERCon)","volume":"30 1","pages":"438-443"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Improving Back-Translation with Iterative Filtering and Data Selection for Sinhala-English NMT\",\"authors\":\"Koshiya Epaliyana, Surangika Ranathunga, Sanath Jayasena\",\"doi\":\"10.1109/MERCon52712.2021.9525800\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural Machine Translation (NMT) requires a large amount of parallel data to achieve reasonable results. For low resource settings such as Sinhala-English where parallel data is scarce, NMT tends to give sub-optimal results. This is severe when the translation is domain-specific. One solution for the data scarcity problem is data augmentation. To augment the parallel data for low resource language pairs, commonly available large monolingual corpora can be used. A popular data augmentation technique is Back-Translation (BT). Over the years, there have been many techniques to improve Vanilla BT. Prominent ones are Iterative BT, Filtering, and Data selection. We employ these in Sinhala - English extremely low resource domain-specific translation in order to improve the performance of NMT. In particular, we move forward from previous research and show that by combining these different techniques, an even better result can be obtained. Our combined model provided a +3.0 BLEU score gain over the Vanilla NMT model and a +1.93 BLEU score gain over the Vanilla BT model for Sinhala → English translation. Furthermore, a +0.65 BLEU score gain over the Vanilla NMT model and a +2.22 BLEU score gain over the Vanilla BT model were observed for English → Sinhala translation.\",\"PeriodicalId\":6855,\"journal\":{\"name\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"volume\":\"30 1\",\"pages\":\"438-443\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Moratuwa Engineering Research Conference (MERCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MERCon52712.2021.9525800\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Moratuwa Engineering Research Conference (MERCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MERCon52712.2021.9525800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

神经机器翻译(NMT)需要大量的并行数据来获得合理的结果。对于低资源设置,如僧伽罗语-英语,并行数据稀缺,NMT倾向于给出次优结果。当翻译是特定于领域的时候,这是很严重的。数据短缺问题的一个解决方案是数据扩充。为了增加低资源语言对的并行数据,可以使用常用的大型单语语料库。一种流行的数据增强技术是反向翻译(BT)。多年来,有许多改进Vanilla BT的技术,其中比较突出的是迭代BT、滤波和数据选择。为了提高NMT的性能,我们在僧伽罗语-英语极低资源的特定领域翻译中使用了这些方法。特别是,我们从以前的研究中向前推进,并表明通过结合这些不同的技术,可以获得更好的结果。对于僧伽罗语→英语翻译,我们的组合模型比香草NMT模型的BLEU得分提高了+3.0,比香草BT模型的BLEU得分提高了+1.93。此外,英语→僧伽罗语翻译的BLEU得分比Vanilla NMT模型提高了+0.65,比Vanilla BT模型提高了+2.22。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving Back-Translation with Iterative Filtering and Data Selection for Sinhala-English NMT
Neural Machine Translation (NMT) requires a large amount of parallel data to achieve reasonable results. For low resource settings such as Sinhala-English where parallel data is scarce, NMT tends to give sub-optimal results. This is severe when the translation is domain-specific. One solution for the data scarcity problem is data augmentation. To augment the parallel data for low resource language pairs, commonly available large monolingual corpora can be used. A popular data augmentation technique is Back-Translation (BT). Over the years, there have been many techniques to improve Vanilla BT. Prominent ones are Iterative BT, Filtering, and Data selection. We employ these in Sinhala - English extremely low resource domain-specific translation in order to improve the performance of NMT. In particular, we move forward from previous research and show that by combining these different techniques, an even better result can be obtained. Our combined model provided a +3.0 BLEU score gain over the Vanilla NMT model and a +1.93 BLEU score gain over the Vanilla BT model for Sinhala → English translation. Furthermore, a +0.65 BLEU score gain over the Vanilla NMT model and a +2.22 BLEU score gain over the Vanilla BT model were observed for English → Sinhala translation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信